A novel class of nucleotide analogues with a dioxane ring as central scaffold has been developed. Synthetic routes in two diastereomeric series were realized, and the final thymidine analogues were synthesized with common functionalities for the automated oligonucleotide synthesis. The chemical space of the initially derived nucleotides was expanded by changing the central dioxane to analogous morpholine derivatives. This opens up the possibility for further derivatization by attaching different substituents at the morpholine nitrogen. The novel nucleotide building blocks were incorporated into double-stranded RNA sequences, and their hybridization properties investigated by melting-temperature analysis. Both scaffolds, dioxanes and morpholines, had an equal impact on double-strand stability, but T values differed depending on the chirality in the six-membered ring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbic.202000693 | DOI Listing |
Curr Microbiol
January 2025
Department of Microbiology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
An aerobic, Gram-stain-positive, motile, coccus-shaped actinomycete, designated strain LSe6-4, was isolated from leaves of sea purslane (Sesuvium portulacastrum L.) in Thailand and subjected to a polyphasic taxonomic studies. Growth of the strain occurred at temperatures between 15 and 38 °C, and with NaCl concentrations 0-13%.
View Article and Find Full Text PDFEur J Med Res
January 2025
Department of Anesthesiology, Chongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical University, No. 120, Longshan Road, Yubei District, Chongqing, 401147, China.
Background: Postoperative pain intensity is influenced by various factors, including genetic variations. The SCN10A gene encodes the Nav1.8 sodium channel protein, which is crucial for pain signal transmission in peripheral sensory neurons.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA.
SAMHD1 is a dNTPase that impedes replication of HIV-1 in myeloid cells and resting T lymphocytes. Here we elucidate the substrate activation mechanism of SAMHD1, which involves dNTP binding at allosteric sites and transient tetramerization. Our findings reveal that tetramerization alone is insufficient to promote dNTP hydrolysis; instead, the activation mechanism requires an inactive tetrameric intermediate with partially occupied allosteric sites.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Institute of Agricultural Environmental Resources, Yunnan Academy of Agricultural Sciences, Kunming, 650205, People's Republic of China.
A novel phosphate-solubilizing and zinc-solubilizing actinobacterium strain YIM S08009 was isolated from rhizosphere soil collected from Pinus yunnanensis in Wuliangshan National Nature Reserve, Pu'er City, Yunnan Province, southwest PR China. Cells of strain YIM S08009 were Gram-stain-positive, non-motile, irregular rods to cocci, and formed yellow and white colonies on nutrient agar. Growth was observed at 10-40 °C (optimum 25-35 °C), pH 6.
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States.
DNPH1 is responsible for eliminating the epigenetically modified nucleotide, 5-hydroxymethyl-2'-deoxyuridine 5'-monophosphate (hmdUMP), preventing formation of hmdUTP, a mutation-inducing nucleotide. Loss of DNPH1 activity sensitizes PARP inhibition-resistant BRCA-deficient cancers by causing incorporation of hmdUTP into DNA. Hydrolysis of hmdUMP by DNPH1 proceeds through a covalent intermediate between Glu104 and 2-deoxyribose 5-phosphate, followed by hydrolysis, a reaction cycle with two transition states.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!