AI Article Synopsis

  • Female fertility is significantly affected by the uterus's ability to identify and combat microbial infections, which can cause inflammation in the endometrium.
  • This study used RNA-seq technology to explore how PPARγ ligands influence gene expression and alternative splicing in pig endometrium during inflammation triggered by LPS.
  • The research discovered multiple differentially expressed genes and alternative splicing events related to LPS and PPARγ treatments, paving the way for future investigations into the role of PPARγ in pig reproductive health.

Article Abstract

Female fertility depends greatly on the capacity of the uterus to recognize and eliminate microbial infections, a major reason of inflammation in the endometrium in many species. This study aimed to determine the in vitro effect of peroxisome proliferator-activated receptor gamma (PPARγ) ligands on the transcriptome genes expression and alternative splicing in the porcine endometrium in the mid-luteal phase of the estrous cycle during LPS-stimulated inflammation using RNA-seq technology. The endometrial slices were incubated in vitro in the presence of LPS and PPARγ agonists-PGJ2 or pioglitazone and antagonist-T0070907. We identified 222, 3, 4, and 62 differentially expressed genes after LPS, PGJ2, pioglitazone, or T0070907 treatment, respectively. In addition, we detected differentially alternative spliced events: after treatment with LPS-78, PGJ2-60, pioglitazone-52, or T0070907-134. These results should become a basis for further studies explaining the mechanism of PPARγ action in the reproductive system in pigs.

Download full-text PDF

Source
http://dx.doi.org/10.1093/biolre/ioaa200DOI Listing

Publication Analysis

Top Keywords

porcine endometrium
8
transcriptome analysis
4
analysis porcine
4
endometrium lps-induced
4
lps-induced inflammation
4
inflammation effects
4
effects ppar-gamma
4
ppar-gamma ligands
4
ligands vitro†
4
vitro† female
4

Similar Publications

Role of resistin in the porcine uterus: effects on endometrial steroidogenesis.

Reprod Fertil Dev

January 2025

Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.

Context The adipose tissue produces adipokines - hormones essential to many biological functions, including reproduction. Aims We hypothesised that resistin, one of the adipokines, is present in the blood plasma, uterine luminal flushings (ULF) and uterus of pigs during the oestrous cycle and early pregnancy, and that resistin influences uterine steroidogenesis. Methods This study aimed to determine the expression of resistin in the porcine endometrium and myometrium during the cycle and pregnancy by quantitative real-time polymerase chain reaction and western blot (WB).

View Article and Find Full Text PDF

Introduction: Endometritis is a very common pathology in animals which changes endometrial leukotriene (LT) formation and muscarinic 2 and 3 receptor subtypes (M2R/M3R) and α-7 nicotinic acetylcholine (ACh) receptor (α-7 nAChR) expression patterns. With the relationship between ACh, its receptors and LT production remaining unclear, the role of M2R, M3R and α-7 nAChR in action of ACh on the 5-lipoxygenase (5-LO), LTA4 hydrolase (LTAH) and LTC4 synthase (LTCS) protein abundances in the inflamed porcine endometrium and on the tissue secretion of LTB4 and LTC4 were studied.

Material And Methods: On day three of the oestrous cycle in gilts aged 7-8 months, 50 mL of either saline solution (control group, n = 5) or an suspension at 10 colony-forming units/mL ( group, n = 5), was injected into each uterine horn.

View Article and Find Full Text PDF

Genome-wide analysis reveals porcine LIFR regulated by DNA methylation promotes the implantation process via the STAT3 signaling.

Int J Biol Macromol

January 2025

Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:

Embryo-uterine interaction during embryo implantation depends on the coordinated expression of numerous genes in the receptive endometrium. While DNA methylation is known to play a significant role in controlling gene expression, specific molecular mechanisms underlying this regulatory event remain elusive in early porcine pregnancy. Here, we investigated the genome-wide DNA methylation landscape in the Yorkshire and Meishan pig's endometrium.

View Article and Find Full Text PDF

Functional effects of BMPR1B in porcine endometrium provides novel insights into the high fecundity of Taihu pigs.

Int J Biol Macromol

December 2024

Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; CAU-SC Advanced Agricultural & Industrial institute, CAU-SCCD Advanced Agricultural & Industrial institute, China Agricultural University, Chengdu 611430, China. Electronic address:

Litter size in pigs is affected by factors such as ovulation number, embryonic survival, and uterine environment conditions. Endometrial epithelial and stromal cells represent the first site of contact between the embryo and sows; therefore, dynamic changes in the growth and development of these cells are among the major factors affecting the intrauterine environment and implantation. Bone morphogenetic protein receptor type-1B (BMPR1B) is a receptor of the bone morphogenetic protein (BMP) family that has been identified as a candidate gene for reproductive traits in pigs.

View Article and Find Full Text PDF

Long noncoding RNA network for lncRNA-mRNA interactions throughout swine estrous cycle reveals developmental and hormonal regulations in reproductive tissues.

J Anim Sci Technol

November 2024

Functional Genomics & Bioinformatics Laboratory, Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea.

The mechanism of estrous cycles of pigs should be explored because their reproductive traits are useful for manipulating productivity and solving problems such as infertility. These estrous cycles should be elucidated to understand the complex interactions between various reproductive tissues (including the ovary, oviduct, and endometrium) and the complex range of hormone secretions during estrous cycles. Long non-coding RNAs (lncRNAs) regulate target genes at transcriptional, post-transcriptional, and post-translational regulation levels in various species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!