Experimental and theoretical studies of the N(D) + H and D reactions.

Phys Chem Chem Phys

Instituto de Física Fundamental, CSIC, IFF-CSIC Serrano 123, 28006 Madrid, Spain.

Published: October 2020

This study reports the results of an experimental and theoretical investigation of the N(2D) + H2 and N(2D) + D2 reactions at room temperature and below. On the experimental side, a supersonic flow (Laval nozzle) reactor was employed to measure rate constants for these processes at temperatures as low as 127 K. N(2D) was produced indirectly by pulsed laser photolysis and these atoms were detected directly by pulsed laser induced fluorescence in the vacuum ultraviolet wavelength region. On the theoretical side, two different approaches were used to calculate rate constants for these reactions; a statistical quantum mechanical (SQM) method and a quasi-classical trajectory capture model including a semi-classical correction for tunneling (SC-Capture). This work is described in the context of previous studies, while the discrepancies between both experiment and theory, as well as between the theoretical results themselves are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp03971cDOI Listing

Publication Analysis

Top Keywords

experimental theoretical
8
rate constants
8
pulsed laser
8
theoretical studies
4
studies reactions
4
reactions study
4
study reports
4
reports experimental
4
theoretical investigation
4
investigation n2d
4

Similar Publications

Over the past decade, there has been considerable attention on mitigating enteric methane (CH) emissions from ruminants through the utilization of antimethanogenic feed additives (AMFA). Administered in small quantities, these additives demonstrate potential for substantial reductions of methanogenesis. Mathematical models play a crucial role in comprehending and predicting the quantitative impact of AMFA on enteric CH emissions across diverse diets and production systems.

View Article and Find Full Text PDF

Despite the increasing interest in developing antimethanogenic additives to reduce enteric methane (CH) emissions and the extensive research conducted over the last decades, the global livestock industry has a very limited number of antimethanogenic feed additives (AMFA) available that can deliver substantial reduction, and they have generally not reached the market yet. This work provides technical recommendations and guidelines for conducting tests intended to screen the potential to reduce, directly or indirectly, enteric CH of compounds before they can be further assessed in in vivo conditions. The steps involved in this work cover the discovery, isolation, and identification of compounds capable of affecting CH production by rumen microbes, followed by in vitro laboratory testing of potential candidates.

View Article and Find Full Text PDF

A review of sodium alginate-based hydrogels: Structure, mechanisms, applications, and perspectives.

Int J Biol Macromol

December 2024

School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China; Shaanxi Key Laboratory of Intelligent Processing for Big Energy Data, Yan'an 716000, China.

With the global emphasis on green and sustainable development, sodium alginate-based hydrogels (SAHs), as a renewable and biocompatible environmental material, have garnered widespread attention for their research and application. This review summarizes the latest advancements in the study of SAHs, thoroughly discussing their structural characteristics, formation mechanisms, and current applications in various fields, as well as prospects for future development. Initially, the chemical structure of SA and the network structure of hydrogels are introduced, and the impact of factors such as molecular weight, crosslinking density, and environmental conditions on the hydrogel structure is explored.

View Article and Find Full Text PDF

Inhibiting HnRNP L-mediated alternative splicing of EIF4G1 counteracts immune checkpoint blockade resistance in Castration-resistant prostate Cancer.

Neoplasia

December 2024

General Surgery Center Department of Thyroid Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, PR China; Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, PR China. Electronic address:

Immunotherapy with checkpoint inhibitors produced significant clinical responses in a subset of cancer patients who were resistant to prior therapies. However, Castration-resistant prostate cancer (CRPC) is seriously lack of T cell infiltration, which greatly limits the clinical application of immunotherapy, but the mechanism is unclear. In the present study, in silico analyses and experimental data show that HnRNP L was significantly negatively correlated with CD4+ and CD8+ T cells infiltration in patients; besides, we found deficiency of HnRNP L recruites CD4+ and CD8+ T cells infiltration and impairs tumorigenesis.

View Article and Find Full Text PDF

Microscopic mapping of infrared modulated photoluminescence spectra with a spatial resolution of ∼2 μm.

Rev Sci Instrum

December 2024

State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 200083 Shanghai, China.

Infrared photoluminescence (PL) spectroscopy with micron-scale spatial resolution is essential for the optoelectronic characterization of narrow-gap microstructures and single defects, yet it poses significant challenges due to the exceedingly weak PL signal and strong background thermal emission. This work introduces an infrared micro-PL (μPL) mapping system that achieves a spatial resolution of ∼2 μm, leveraging the inherent advantages of the step-scan Fourier transform infrared spectrometer-based modulated PL technique in the mid- and far-infrared regions. The configuration of the experimental system is described, and a theoretical upper limit of spatial resolution is derived to be about 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!