Toward a Digital Platform for the Self-Management of Noncommunicable Disease: Systematic Review of Platform-Like Interventions.

J Med Internet Res

Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia.

Published: October 2020

Background: Digital interventions are effective for health behavior change, as they enable the self-management of chronic, noncommunicable diseases (NCDs). However, they often fail to facilitate the specific or current needs and preferences of the individual. A proposed alternative is a digital platform that hosts a suite of discrete, already existing digital health interventions. A platform architecture would allow users to explore a range of evidence-based solutions over time to optimize their self-management and health behavior change.

Objective: This review aims to identify digital platform-like interventions and examine their potential for supporting self-management of NCDs and health behavior change.

Methods: A literature search was conducted in January 2020 using EBSCOhost, PubMed, Scopus, and EMBASE. No digital platforms were identified, so criteria were broadened to include digital platform-like interventions. Eligible platform-like interventions offered a suite of discrete, evidence-based health behavior change features to optimize self-management of NCDs in an adult population and provided digitally supported guidance for the user toward the features best suited to their needs and preferences. Data collected on interventions were guided by the CONSORT-EHEALTH (Consolidated Standards of Reporting Trials of Electronic and Mobile Health Applications and Online Telehealth) checklist, including evaluation data on effectiveness and process outcomes. The quality of the included literature was assessed using the Mixed Methods Appraisal Tool.

Results: A total of 7 studies were included for review. Targeted NCDs included cardiovascular diseases (CVD; n=3), diabetes (n=3), and chronic obstructive pulmonary disease (n=1). The mean adherence (based on the number of follow-up responders) was 69% (SD 20%). Of the 7 studies, 4 with the highest adherence rates (80%) were also guided by behavior change theories and took an iterative, user-centered approach to development, optimizing intervention relevance. All 7 interventions presented algorithm-supported user guidance tools, including electronic decision support, smart features that interact with patterns of use, and behavior change stage-matching tools. Of the 7 studies, 6 assessed changes in behavior. Significant effects in moderate-to-vigorous physical activity were reported, but for no other specific health behaviors. However, positive behavior change was observed in studies that focused on comprehensive behavior change measures, such as self-care and self-management, each of which addresses several key lifestyle risk factors (eg, medication adherence). No significant difference was found for psychosocial outcomes (eg, quality of life). Significant changes in clinical outcomes were predominately related to disease-specific, multifaceted measures such as clinical disease control and cardiovascular risk score.

Conclusions: Iterative, user-centered development of digital platform structures could optimize user engagement with self-management support through existing, evidence-based digital interventions. Offering a palette of interventions with an appropriate degree of guidance has the potential to facilitate disease-specific health behavior change and effective self-management among a myriad of users, conditions, or stages of care.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7657720PMC
http://dx.doi.org/10.2196/16774DOI Listing

Publication Analysis

Top Keywords

behavior change
28
health behavior
20
platform-like interventions
16
digital platform
12
interventions
10
behavior
10
digital
9
self-management
8
digital interventions
8
health
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!