Multiple sclerosis (MS) is an autoimmune and degenerative disorder of the central nervous system (CNS) that causes a progressive loss of motor and cognitive performances. Moreover, since the earlier phases, axonal loss as well as neuronal degeneration and a failure of oligodendrocytes to promote myelin repair have been demonstrated. In previous studies, it has been shown that the treatment of rat neuronal primary cultures with serum from MS patients can be toxic for neurons. Here we report a pilot investigation showing that CSF from patients contains extracellular vesicles (EVs) able to induce cell death in rat cultured astrocytes. Although these data are still preliminary, they suggest at least two notable considerations: i) EVs can be instrumental to pathology, and their concentration in CSF might be proportional to MS severity; ii) astrocytes can be part of the degenerative process. As a consequence, we propose that cultured astrocytes can be used as a model to study the toxicity of EVs from patients affected by MS at different stages. In addition, we suggest that EVs and their cargoes might be used as biomarkers of MS severity.

Download full-text PDF

Source
http://dx.doi.org/10.5114/pjp.2020.99794DOI Listing

Publication Analysis

Top Keywords

extracellular vesicles
8
multiple sclerosis
8
cultured astrocytes
8
toxic effects
4
astrocytes
4
effects astrocytes
4
astrocytes extracellular
4
vesicles csf
4
csf multiple
4
patients
4

Similar Publications

Adaptive immune resistance in cancer describes the various mechanisms by which tumors adapt to evade anti-tumor immune responses. IFN-γ induction of programmed death-ligand 1 (PD-L1) was the first defined and validated adaptive immune resistance mechanism. The endoplasmic reticulum (ER) is central to adaptive immune resistance as immune modulatory secreted and integral membrane proteins are dependent on ER.

View Article and Find Full Text PDF

Extracellular vesicles from pancreatic cancer and its tumour microenvironment promote increased Schwann cell migration.

Br J Cancer

January 2025

Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.

Background: Pancreatic ductal adenocarcinoma (PDAC) exhibits a high frequency of neural invasion (NI). Schwann cells (SCs) have been shown to be reprogrammed to facilitate cancer cell migration and invasion into nerves. Since extracellular vesicles (EVs) affect the tumour microenvironment and promote metastasis, the present study analysed the involvement of EVs from pancreatic cancer cells and their microenvironment in altering SC phenotype as part of the early events in the process of NI.

View Article and Find Full Text PDF

CAFs-released exosomal CREB1 promotes cell progression and immune evasion in thyroid cancer via the positive regulation of CCL20.

Autoimmunity

December 2025

Department of Thyroid Head and Neck Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.

Background: Exosomes derived from cancer-associated fibroblasts (CAFs) can affect tumor microenvironment (TME) of thyroid cancer (TC). The cAMP response element binding protein 1 (CREB1) acts as a transcription factor to participate in cancer development. Currently, we aimed to explore the molecular mechanism of exosome-associated CREB1 and C-C motif chemokine ligand 20 (CCL20) in TC.

View Article and Find Full Text PDF

Platelet extracellular vesicles-loaded hydrogel bandages for personalized wound care.

Trends Biotechnol

January 2025

Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City 235603, Taiwan; International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City 235603, Taiwan; International PhD Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan. Electronic address:

Autologous or allogeneic platelet-derived extracellular vesicles (pEVs) show potential in enhancing tissue recovery and healing chronic wounds. pEVs promote neovascularization and cell migration while reducing inflammation, oxidative stress, and scarring. However, their efficacy in clinical settings is challenged by their susceptibility to washout by wound exudate.

View Article and Find Full Text PDF

Validation of an automated quality control method to test sterility of two advanced therapy medicinal products: Mesenchymal stromal cells and their extracellular vesicles.

Hematol Transfus Cell Ther

November 2024

Hospital São Rafael, Salvador, Bahia, Brazil; Instituto D'Or de Pesquisa e Ensino (IDOR), Salvador, Bahia, Brazil; Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Bahia, Brazil. Electronic address:

Mesenchymal stromal cells are multipotent cells present in various tissues that are widely studied for relevant therapeutic potential due to their paracrine immunomodulatory and tissue regenerating properties. Many mesenchymal stromal cell-based products are under investigation for the treatment of different clinical conditions. Recently, the therapeutic potential of the extracellular vesicles released by these cells has been under focus, with emphasis on clinical translation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!