Glioblastomas (GBM) contain numerous hypoxic foci associated with a rare fraction of glioma stem cells (GSCs). Left-right determination factor (LEFTY) and Nodal, members of the transforming growth factor β (TGF-β) superfamily, have glycogen synthase kinase 3β (GSK-3β) phosphorylation motifs and are linked with stemness in human malignancies. Herein, we investigated the roles of LEFTY and Nodal in GBM hypoxic foci. In clinical samples, significantly higher expression of LEFTY, Nodal, phospho (p) GSK-3β, pSmad2, and Nestin, as well as higher apoptotic and lower proliferation rates, were observed in nonpseudopalisading (non-Ps) perinecrotic lesions as compared to Ps and non-necrotic tumor lesions, with a positive correlation between LEFTY, Nodal, pGSK-3β, or pSmad2 scores. In KS-1, a GBM cell line that lacks endogenous Nodal expression, treatment with the hypoxic mimetic CoCl increased LEFTY, pGSK-3β, and pSmad2 levels, but decreased pAkt levels. Moreover, the promoter for LEFTY, but not Nodal, was activated by Smad2 or TGF-β1, suggesting that overexpression of LEFTY and Nodal may be due to Akt-independent GSK-3β inactivation, with or without cooperation of the TGF-β1/Smad2 axis. LEFTY and Nodal overexpression increased proliferation rates and reduced susceptibility to CoCl -induced apoptosis, and increased the expression of epithelial-mesenchymal transition (EMT)/GSC-related markers. An increased ALDH1 population and more efficient spheroid formation was also observed in LEFTY-overexpressing cells. These findings suggest that LEFTY and Nodal may contribute to cell survival in non-Ps GBM perinecrotic lesions, leading to alterations in apoptosis, proliferation, or EMT/GCS features.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mc.23265DOI Listing

Publication Analysis

Top Keywords

lefty nodal
36
nodal
10
lefty
9
nodal overexpression
8
cell survival
8
hypoxic foci
8
proliferation rates
8
perinecrotic lesions
8
pgsk-3β psmad2
8
requirements lefty
4

Similar Publications

Mammalian primordial germ cells (PGCs) migrate asynchronously through the embryonic hindgut and dorsal mesentery to reach the gonads. We previously found that interaction with different somatic niches regulates PGC proliferation along the migration route. To characterize transcriptional heterogeneity of migrating PGCs and their niches, we performed single-cell RNA sequencing of 13,262 mouse PGCs and 7,868 surrounding somatic cells during migration (E9.

View Article and Find Full Text PDF

Dicer substrate interfering RNAs (DsiRNAs) destroy targeted transcripts using the RNA-Induced Silencing Complex (RISC) through a process called RNA interference (RNAi). This process is ubiquitous among eukaryotes. Here we report the utility of DsiRNA in embryos of the sea urchin Lytechinus variegatus (Lv).

View Article and Find Full Text PDF

Dicer substrate interfering RNAs (DsiRNAs) destroy targeted transcripts using the RNA-Induced Silencing Complex (RISC) through a process called RNA interference (RNAi). This process is ubiquitous among eukaryotes. Here we report the utility of DsiRNA in embryos of the sea urchin Specific knockdowns phenocopy known morpholino and inhibitor knockdowns, and DsiRNA offers a useful alternative to morpholinos.

View Article and Find Full Text PDF

Molecular analysis of a self-organizing signaling pathway for axial patterning from egg to tailbud.

Proc Natl Acad Sci U S A

July 2024

Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-1662.

embryos provide a favorable material to dissect the sequential steps that lead to dorsal-ventral (D-V) and anterior-posterior (A-P) cell differentiation. Here, we analyze the signaling pathways involved in this process using loss-of-function and gain-of-function approaches. The initial step was provided by Hwa, a transmembrane protein that robustly activates early β-catenin signaling when microinjected into the ventral side of the embryo leading to complete twinned axes.

View Article and Find Full Text PDF

In the highly regulative embryo of the sea urchin Paracentrotus lividus, establishment of the dorsal-ventral (D/V) axis critically depends on the zygotic expression of the TGF-β nodal in the ventral ectoderm. nodal expression is first induced ubiquitously in the 32-cell embryo and becomes progressively restricted to the presumptive ventral ectoderm by the early blastula stage. This early spatial restriction of nodal expression is independent of Lefty, and instead relies on the activity of Panda, a maternally expressed TGF-β ligand related to Lefty and Inhibins, which is required maternally for D/V axis specification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!