AI Article Synopsis

  • Phenotypic plasticity enables organisms to adapt to their environment without changes to DNA, with epigenetic modifications playing a key role in this process.
  • A study on the plant Taraxacum brevicorniculatum explored how competition intensity influences both immediate and transgenerational phenotypic plasticity through DNA methylation.
  • Findings indicated that offspring from competitively stressed parents developed faster and had less degradable leaves, which may impact nutrient cycling and promote biodiversity and coexistence among species.

Article Abstract

Phenotypic plasticity, within and across generations (transgenerational plasticity), allows organisms and their progeny to adapt to the environment without modification of the underlying DNA. Recent findings suggest that epigenetic modifications are important mediators of such plasticity. However, empirical studies have, so far, mainly focused on plasticity in response to abiotic factors, overlooking the response to competition. We tested for within-generation and transgenerational phenotypic plasticity triggered by plant-plant competition intensity, and we tested whether it was mediated via DNA methylation, using the perennial, apomictic herb Taraxacum brevicorniculatum in four coordinated experiments. We then tested the consequences of transgenerational plasticity affecting competitive interactions of the offspring and ecosystem processes, such as decomposition. We found that, by promoting differences in DNA methylation, offspring of plants under stronger competition developed faster and presented more resource-conservative phenotypes. Further, these adjustments associated with less degradable leaves, which have the potential to reduce nutrient turnover and might, in turn, favour plants with more conservative traits. Greater parental competition enhanced competitive abilities of the offspring, by triggering adaptive phenotypic plasticity, and decreased offspring leaf decomposability. Our results suggest that competition-induced transgenerational effects could promote rapid adaptations and species coexistence and feed back on biodiversity assembly and nutrient cycling.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.17037DOI Listing

Publication Analysis

Top Keywords

transgenerational plasticity
12
phenotypic plasticity
12
competition-induced transgenerational
8
plasticity
8
competitive interactions
8
dna methylation
8
offspring
5
plasticity influences
4
influences competitive
4
interactions leaf
4

Similar Publications

Parental experiences can alter offspring phenotypes via transgenerational plasticity (TGP), which may prime offspring to adaptively respond to novel stressors, including novel predators. However, we know little about the types of sensory cues (e.g.

View Article and Find Full Text PDF

Global oceans are warming and acidifying because of increasing greenhouse gas emissions that are anticipated to have cascading impacts on marine ecosystems and organisms, especially those essential for biodiversity and food security. Despite this concern, there remains some skepticism about the reproducibility and reliability of research done to predict future climate change impacts on marine organisms. Here, we present meta-analyses of over two decades of research on the climate change impacts on an ecologically and economically valuable Sydney rock oyster, .

View Article and Find Full Text PDF

Integrating social learning, social networks, and non-parental transgenerational plasticity.

Trends Ecol Evol

January 2025

Department of Environmental Science and Policy, University of California, One Shields Ave, Davis, CA 95616, USA.

Transgenerational plasticity (TGP) has largely focused on how parental exposure to ecological conditions shapes the phenotypes of future generations. However, organisms acquire information about their ecological environment via social learning, which can also shape TGP in profound ways. We demonstrate that non-parents alter how parents detect and respond to environmental cues in ways that spillover to affect offspring, non-parents influence offspring even without direct physical interactions, and parental cues received by offspring can alter the phenotypes of other juveniles.

View Article and Find Full Text PDF

Transgenerational Plasticity Enhances the Tolerance of Duckweed () to Stress from Exudates of .

Int J Mol Sci

December 2024

Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.

Transgenerational plasticity (TGP) refers to the influence of ancestral environmental signals on offspring's traits across generations. While evidence of TGP in plants is growing, its role in plant adaptation over successive generations remains unclear, particularly in floating plants facing fluctuating environments. Duckweed (), a common ecological remediation material, often coexists with the harmful bloom-forming cyanobacterium , which releases a highly toxic exudate mixture (MaE) during its growth.

View Article and Find Full Text PDF

Immunity priming and biostimulation by airborne nonanal increase yield of field-grown common bean plants.

Front Plant Sci

November 2024

Departamento de Ingeniería Genética, Laboratorio de Ecología de Plantas, Centro de Investigación y de Estudios Avanzados (CINVESTAV) - Unidad Irapuato, Irapuato, Mexico.

Introduction: Stress-induced volatile organic compounds (VOCs) that induce plant immunity bear potential for biocontrol. Here, we explore the potential of nonanal to enhance the seed yield of common bean () under open field conditions that are realistic for smallholder farmers.

Methods And Results: Using plastic cups with a nonanal-containing lanolin paste as low-cost dispensers, we observed that exposure of Flor de Junio Marcela (FJM) plants over 48h to airborne nonanal was followed by a 3-fold higher expression of pathogenesis-related (PR) genes PR1 and PR4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!