FoxA2 and p53 regulate the transcription of HSD17B1 in ovarian granulosa cells of pigs.

Reprod Domest Anim

National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.

Published: January 2021

The oestrogens have been highly implicated in the fertility of female animals. It is widely known that the oestrogens are primarily synthetized by the ovarian granulosa cells (GCs), and the final and essential step of this process is to catalyse the oestrone to the more active oestradiol by the protein coded by hydroxysteroid 17-beta dehydrogenase 1 (HSD17B1) gene. However, the molecular mechanism regarding the transcription of HSD17B1 remains to be fully elucidated in ovarian GCs. In this study, the 5'-deletion, luciferase assay and chromatin immunoprecipitation (ChIP) were utilized to explore the molecular regulation of transcription of HSD17B1 with the porcine ovarian GCs as the cellular model. After the deletions with -2105 to -1754 bp, -1753 to -1429 bp, -1430 to -1081 bp and -1082 to -730 bp, the relative luciferase activity of HSD17B1 promoter did not change significantly, but the deletion of -731 to -332 bp significantly increased the relative luciferase activity of HSD17B1 promoter, and an insertion (GTTT) that might raise the transcription of HSD17B1 was identified at -401 bp of HSD17B1. These findings suggested the region from -731 to +38 bp was the core promoter of HSD17B1, and the region between -731 to -332 bp might be a silence element for HSD17B1. Furthermore, the forkhead box A2 (FoxA2) directly bound at -412 to -401 bp to negatively but p53 bound at -383 to -374 bp to positively regulate the transcription and translation of HSD17B1 in ovarian GCs. These findings will improve our understanding on HSD17B1-mediated oestrogens and provide useful information for further investigations into fertility of females.

Download full-text PDF

Source
http://dx.doi.org/10.1111/rda.13850DOI Listing

Publication Analysis

Top Keywords

transcription hsd17b1
16
ovarian gcs
12
hsd17b1
11
regulate transcription
8
hsd17b1 ovarian
8
ovarian granulosa
8
granulosa cells
8
relative luciferase
8
luciferase activity
8
activity hsd17b1
8

Similar Publications

Background: The ovary is a central organ in the reproductive system that produces oocytes and synthesizes and secretes steroid hormones. Healthy development and regular cyclical change in the ovary is crucial for regulating reproductive processes. However, the key genes and metabolites that regulate ovarian development and pregnancy have not been fully elucidated.

View Article and Find Full Text PDF

Endocrine-Disruptive Effects of Adenylate Cyclase Activator Forskolin: In Vitro and In Vivo Evidence.

Toxics

September 2024

MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.

Forskolin (FSK) is a potent adenylate cyclase activator and may display endocrine-disruptive effects via the disruption of steroidogenesis. Here, we tested this hypothesis by use of the in vitro H295R steroidogenesis assay and the in vivo long-term medaka () exposure assay. The results from the H295R assay demonstrated that the transcriptional levels of a series of genes involved in steroidogenesis, including , , , , , and , were remarkably up-regulated.

View Article and Find Full Text PDF

The hybrid F offspring of (♂) and (♀) exhibit heterosis in disease resistance and also show abnormal sex differentiation. To understand the mechanism behind gonadal differentiation in the hybrid F, we analyzed the transcriptomes of , , and the hybrid F; screened for genes related to gonad development in these samples; and measured their expression levels. Our results revealed that compared to either or , the gene expressions in most sub-pathways of the SNARE interactions in the vesicular transport pathway in the hypothalamus, pituitary, and gonadal tissues of their hybrid F offspring were significantly up-regulated.

View Article and Find Full Text PDF

Epigenetic regulation is an important entry point to study the pathogenesis of selective fetal growth restriction (sFGR), and an understanding of the role of long noncoding RNAs (lncRNAs) in sFGR is lacking. Our study aimed to investigate the potential role of a lncRNA, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), in sFGR using molecular biology experiments and gain- or loss-of-function assays. We found that the levels of MALAT1, ERRγ, and HSD17B1 were downregulated and that of miR-424 was upregulated in the placental shares of the smaller twins.

View Article and Find Full Text PDF

The purpose of this study was to explore and verify genes that regulate the reproductive traits of Tibetan pigs at the mRNA level. The ovarian tissues of Tibetan pigs (TPs) and Yorkshire pigs (YPs) were selected as research objects, and cDNA libraries of the ovarian tissue transcripts of Tibetan pigs and Yorkshire pigs were successfully constructed by the RNA-Seq technique. A total of 651 differentially expressed genes (DEGs) were screened, including 414 up-regulated genes and 237 down-regulated genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!