Single-Cell Isolation from Regenerating Murine Muscles for RNA-Sequencing Analysis.

STAR Protoc

Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.

Published: September 2020

Single-cell RNA sequencing (scRNA-seq) is a powerful technique for deconvoluting and clustering thousands of otherwise intermingled cells based on their gene expression. Here, we present a complete protocol for the unbiased evaluation of regenerating murine skeletal muscle using scRNA-seq. The skeletal muscle is unique in its cellular composition as being primarily multinucleated muscle cells (myofibers). This protocol focuses on isolating mononuclear cells from muscle for subsequent scRNA-seq analysis and can be modified to assess cell populations in other tissues of interest. For complete details on the use and execution of this protocol, please refer to Liu et al. (2015) and Oprescu et al. (2020).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7580090PMC
http://dx.doi.org/10.1016/j.xpro.2020.100051DOI Listing

Publication Analysis

Top Keywords

regenerating murine
8
skeletal muscle
8
single-cell isolation
4
isolation regenerating
4
murine muscles
4
muscles rna-sequencing
4
rna-sequencing analysis
4
analysis single-cell
4
single-cell rna
4
rna sequencing
4

Similar Publications

Following injury, skeletal muscle undergoes repair via satellite cell (SC)-mediated myogenic progression. In SCs, the circadian molecular clock gene, Bmal1, is necessary for appropriate myogenic progression and repair with evidence that muscle molecular clocks can also affect force production. Utilizing a mouse model allowing for inducible depletion of Bmal1 within SCs, we determined contractile function, SC myogenic progression and muscle damage and repair following eccentric contractile-induced injury.

View Article and Find Full Text PDF

ETV2/ER71, an ETS (E-twenty six) transcription factor, is critical for hematopoiesis and vascular development. However, research about the molecular mechanisms behind ETV2-mediated gene transcription is limited. Herein, we demonstrate that ETV2 and KDM4A, an H3K9 demethylase, regulate hematopoietic and endothelial genes.

View Article and Find Full Text PDF

Single-cell multi-omics deciphers hepatocyte dedifferentiation and illuminates maintenance strategies.

Cell Prolif

January 2025

MOE Key Laboratory of Bioinformatics, Beijing National Research Center for Information Science and Technology, Bioinformatics Division, Tsinghua University, Beijing, China.

Due to the similarity to human hepatocytes, porcine hepatocytes play an important role in hepatic research and drug evaluation. However, once hepatocytes were cultured in vitro, it was often prone to dedifferentiate, resulting in the loss of their characteristic features and normal functions, which impede their application in liver transplantation and hepatotoxic drugs evaluation. Up to now, this process has yet to be thoroughly investigated from the single-cell resolution and multi-omics perspective.

View Article and Find Full Text PDF

Lymphedema, a severe and complex inflammatory disease caused by lymphatic system insufficiency and impeded lymphatic drainage that causes an enormous physical and psychological burden on patients and may even lead to death, has long been a challenging issue in the medical field. Clinically, conventional approaches including surgical treatment and conservative treatment have been employed for lymphedema therapy, but their curative effect is still unsatisfactory because of high operational difficulty, high cost, and long-term reliance. In this study, a novel kind of piezoelectric microneedle driven by ultrasound (US) is proposed to regulate macrophage polarization and remodel the pathological inflammatory microenvironment in a noninvasive manner, thereby promoting lymphatic regeneration and improving lymphedema.

View Article and Find Full Text PDF

Indirect bypass using autologous tissue is effective in Moyamoya disease, especially among pediatric patients. This study aimed to evaluate the effectiveness of indirect bypass using DuraGen (absorbable artificial dura mater composed of collagen matrix), as a substitute for autologous tissue in a rat model of chronic cerebral hypoperfusion. Male Wistar rats were subjected to bilateral internal carotid artery occlusion and divided into three groups: a control group without bypass surgery, a group wherein indirect bypass was performed using the temporalis muscle (encephalo-myo-synangiosis [EMS] group), and a group wherein DuraGen was used (Dura group).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!