Background: The primary health-care center (PHC) and community health center (CHC) are not well equipped with laboratory services. Semiauto analyzer-based reporting could be an effective modality, provided that the performance standard is comparable to that of the fully automatic analyzer. So, the objective of this study was to analyze the test results of biochemical parameters in semiauto and fully automatic analyzer and to compare the quality performance.
Materials And Methods: One hundred forty-nine patients undergoing routine biochemical investigations in the department laboratory were enrolled in this study. Two millimeter of venous blood was collected from all the participants and processed for urea, cholesterol, triglyceride (TG), serum glutamate-oxaloacetate transaminase (SGOT) (aspartate aminotransferase), and serum glutamate-pyruvate transaminase (SGPT) (alanine aminotransferase) by using standard kits (ERBA) in semiauto analyzer (Transasia Erba Chem5X by Calbiotech Inc. USA, semiautomated clinical chemistry analyzer) and the fully automatic analyzer (Cobas Integra 400 Roche, Germany) method.
Results: There was high variability in the distribution of urea, TG, SGOT, and SGPT values in both measurement methods, whereas cholesterol data followed a normal distribution (skewness: 1.522, 1.037; kurtosis: 2.373, 0.693 in semiauto and automated methods, respectively). A significant positive correlation between both the methods of assessment was observed in urea, cholesterol, TGs, SGOT, and SGPT. The mean difference for urea was -9.85 ± 23.997 (LOA: 37.189, -56.88), whereas it was highest for TG -24.34 ± 38.513 (LOA: 51.144, -99.829), suggesting that both methods can measure urea with less difference in absolute values, whereas for TG the measurement values are highly variable.
Conclusion: The test performance of biochemical parameters such as urea, total cholesterol, TGs, SGOT, and SGPT taken by semiauto analyzer and fully automatic analyzer method of assessment were highly related and comparable.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7586617 | PMC |
http://dx.doi.org/10.4103/jfmpc.jfmpc_94_20 | DOI Listing |
Sensors (Basel)
January 2025
Beijing Institute of Spacecraft System Engineering, China Academy of Space Technology, Beijing 100094, China.
The Chang'e-6 (CE-6) landing area on the far side of the Moon is located in the southern part of the Apollo basin within the South Pole-Aitken (SPA) basin. The statistical analysis of impact craters in this region is crucial for ensuring a safe landing and supporting geological research. Aiming at existing impact crater identification problems such as complex background, low identification accuracy, and high computational costs, an efficient impact crater automatic detection model named YOLOv8-LCNET (YOLOv8-Lunar Crater Net) based on the YOLOv8 network is proposed.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Computer Science, Northeast Electric Power University, Jilin 132012, China.
Satellites frequently encounter atmospheric haze during imaging, leading to the loss of detailed information in remote sensing images and significantly compromising image quality. This detailed information is crucial for applications such as Earth observation and environmental monitoring. In response to the above issues, this paper proposes an end-to-end multi-scale adaptive feature extraction method for remote sensing image dehazing (MSD-Net).
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology (R-NanoLab), School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou, GR-15773 Athens, Greece.
The recycling of Carbon Fibre-Reinforced Polymers (CFRPs) is becoming increasingly crucial due to the growing demand for sustainability in high-performance industries such as automotive and aerospace. This study investigates the impact of two chemical recycling techniques, chemically assisted solvolysis and plasma-enhanced solvolysis, on the morphology and properties of carbon fibres (CFs) recovered from end-of-life automotive parts. In addition, the effects of fibre sizing are explored to enhance the performance of the recycled carbon fibres (rCFs).
View Article and Find Full Text PDFJ Cardiovasc Comput Tomogr
January 2025
Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA; Department of Diagnostic and Interventional Radiology, University Medical Center of Johannes Gutenberg-University, Mainz, Germany; German Centre for Cardiovascular Research, Mainz, Germany.
Background: This study aimed to determine whether artificial intelligence (AI)-based automated assessment of left atrioventricular coupling index (LACI) can provide incremental value above other traditional risk factors for predicting mortality among patients with severe aortic stenosis (AS) undergoing coronary CT angiography (CCTA) before transcatheter aortic valve replacement (TAVR).
Methods: This retrospective study evaluated patients with severe AS who underwent CCTA examination before TAVR between September 2014 and December 2020. An AI-prototype software fully automatically calculated left atrial and left ventricular end-diastolic volumes and LACI was defined by the ratio between them.
Proc Natl Acad Sci U S A
January 2025
Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China.
Dissolution of CO in water followed by the subsequent hydrolysis reactions is of great importance to the global carbon cycle, and carbon capture and storage. Despite numerous previous studies, the reactions are still not fully understood at the atomistic scale. Here, we combined ab initio molecular dynamics (AIMD) simulations with Markov state models to elucidate the reaction mechanisms and kinetics of CO in supercritical water both in the bulk and nanoconfined states.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!