A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exons as units of phenotypic impact for truncating mutations in autism. | LitMetric

Exons as units of phenotypic impact for truncating mutations in autism.

Mol Psychiatry

Department of Biomedical Informatics, Columbia University, New York, NY, USA.

Published: May 2021

Autism spectrum disorders (ASD) are a group of related neurodevelopmental diseases displaying significant genetic and phenotypic heterogeneity. Despite recent progress in understanding ASD genetics, the nature of phenotypic heterogeneity across probands remains unclear. Notably, likely gene-disrupting (LGD) de novo mutations affecting the same gene often result in substantially different ASD phenotypes. Nevertheless, we find that truncating mutations affecting the same exon frequently lead to strikingly similar intellectual phenotypes in unrelated ASD probands. Analogous patterns are observed for two independent proband cohorts and several other important ASD-associated phenotypes. We find that exons biased toward prenatal and postnatal expression preferentially contribute to ASD cases with lower and higher IQ phenotypes, respectively. These results suggest that exons, rather than genes, often represent a unit of effective phenotypic impact for truncating mutations in autism. The observed phenotypic patterns are likely mediated by nonsense-mediated decay (NMD) of splicing isoforms, with autism phenotypes usually triggered by relatively mild (15-30%) decreases in overall gene dosage. We find that each ASD gene with recurrent mutations can be characterized by a parameter, phenotype dosage sensitivity (PDS), which quantifies the relationship between changes in a gene's dosage and changes in a given disease phenotype. We further demonstrate analogous relationships between exon LGDs and gene expression changes in multiple human tissues. Therefore, similar phenotypic patterns may be also observed in other human genetic disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41380-020-00876-3DOI Listing

Publication Analysis

Top Keywords

truncating mutations
12
phenotypic impact
8
impact truncating
8
mutations autism
8
phenotypic heterogeneity
8
phenotypes find
8
patterns observed
8
phenotypic patterns
8
phenotypic
6
mutations
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!