The progressive consumption growth of non-steroidal anti-inflammatory drugs (NSAIDs) has progressively raised the attention toward the gastrointestinal, renal, and cardiovascular toxicity. Increased risk of cardiovascular diseases was strictly associated with the usage of COX-2 selective NSAIDs. Other studies allowed to clarify that the cardiovascular risk is not limited to COX-2 selective but also extended to non-selective NSAIDs, such as Diclofenac and Ketoprofen. To date, although a less favorable cardiovascular risk profile for Diclofenac as compared to Ketoprofen is reported, the mechanisms through which NSAIDs cause adverse cardiovascular events are not entirely understood. The present study aimed to evaluate the effects of Ketoprofen in comparison with Diclofenac in immortalized human cardiomyocytes. The results obtained highlight the dose-dependent cardiotoxicity of Diclofenac compared to Ketoprofen. Despite both drugs induce the increase in ROS production, decrease of mitochondrial membrane potential, and proteasome activity modulation, only Diclofenac exposure shows a marked alteration of these intracellular parameters, leading to cell death. Noteworthy, Diclofenac decreases the proteasome 26S DC and this scenario may be dependent on the intracellular overload of oxidized proteins. The data support the hypothesis that immortalized human cardiomyocytes exposed to Ketoprofen are subjected to tolerable stress events, conversely Diclofenac exposition triggers cell death.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7591859PMC
http://dx.doi.org/10.1038/s41598-020-75394-xDOI Listing

Publication Analysis

Top Keywords

immortalized human
12
human cardiomyocytes
12
cox-2 selective
8
cardiovascular risk
8
diclofenac compared
8
compared ketoprofen
8
cell death
8
diclofenac
7
cardiovascular
5
ketoprofen
5

Similar Publications

Illustrating the structures of bias from immortal time using directed acyclic graphs.

Int J Epidemiol

December 2024

School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.

Background: Immortal time is a period of follow-up during which death or the study outcome cannot occur by design. Bias from immortal time has been increasingly recognized in epidemiological studies. However, the fundamental causes and structures of bias from immortal time have not been explained systematically.

View Article and Find Full Text PDF

VCP regulates early tau seed amplification via specific cofactors.

Mol Neurodegener

January 2025

Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, 6124 Harry Hines Blvd, Dallas, TX, NS8.334, United States.

Background: Neurodegenerative tauopathies may progress based on seeding by pathological tau assemblies, whereby an aggregate is released from one cell, gains entry to an adjacent or connected cell, and serves as a specific template for its own replication in the cytoplasm. Seeding into the complex cytoplasmic milieu happens within hours, implying the existence of unknown factors that regulate this process.

Methods: We used proximity labeling to identify proteins that control seed amplification within 5 h of seed exposure.

View Article and Find Full Text PDF

The cGAS-STING, p38 MAPK, and p53 pathways link genome instability to accelerated cellular senescence in ATM-deficient murine lung fibroblasts.

Proc Natl Acad Sci U S A

January 2025

Department of Human Molecular Genetics and Biochemistry, Faculty of Health & Medical Sciences, Tel Aviv University, Tel Aviv 69978, Israel.

Ataxia-telangiectasia (A-T) is a pleiotropic genome instability syndrome resulting from the loss of the homeostatic protein kinase ATM. The complex phenotype of A-T includes progressive cerebellar degeneration, immunodeficiency, gonadal atrophy, interstitial lung disease, cancer predisposition, endocrine abnormalities, chromosomal instability, radiosensitivity, and segmental premature aging. Cultured skin fibroblasts from A-T patients exhibit premature senescence, highlighting the association between genome instability, cellular senescence, and aging.

View Article and Find Full Text PDF

To achieve replicative immortality, cancer cells must activate telomere maintenance mechanisms. In 10 to 15% of cancers, this is enabled by recombination-based alternative lengthening of telomeres pathways (ALT). ALT cells display several hallmarks including heterogeneous telomere length, extrachromosomal telomeric repeats, and ALT-associated PML bodies.

View Article and Find Full Text PDF

Persistence is a strategy used by many viruses to evade eradication by the immune system, ensuring their permanence and transmission within the host and optimizing viral fitness. During persistence, viruses can trigger various phenomena, including target organ damage, mainly due to an inflammatory state induced by infection, as well as cell proliferation and/or immortalization. In addition to immune evasion and chronic inflammation, factors contributing to viral persistence include low-level viral replication, the accumulation of viral mutants, and, most importantly, maintenance of the viral genome and reliance on viral oncoprotein production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!