Aggregation of α-synuclein (α-syn) is associated with the manifestation of various pathogenic synucleinopathies, including Parkinson's disease attributed to both genetic and environmental stress factors. The initial events triggering α-syn aggregation and disease initiation due to environmental stress factors are still largely unknown. Here, to understand the mechanism of misfolding and aggregation initiation, we induced α-syn aggregation with rotenone, an established chemical inducer of PD like symptoms. We found that rotenone accelerates the formation of structurally distinct oligomers and fibrils that act as templates and increase the formation of conformers capable of spreading to the neighboring neuronal cells. Molecular dynamics simulations and NMR studies revealed the involvement of NAC region and formation of helical conformations resulting in structural variations in oligomers and fibrils. These structural variations affect the cytotoxic potential of oligomers and fibrils, where, the beta sheet rich oligomers and fibrils alter the membrane potential of neuronal cells and lead to early apoptosis. Our results describe the initial mechanistic events in pathogenic protein aggregation, where initial structural alterations in response to external stress factors dictate the toxicity of resulting conformers. This information will further provide insights in the understanding of protein aggregation, disease progression and pathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7591854PMC
http://dx.doi.org/10.1038/s41598-020-75361-6DOI Listing

Publication Analysis

Top Keywords

oligomers fibrils
16
stress factors
12
nac region
8
environmental stress
8
α-syn aggregation
8
aggregation disease
8
neuronal cells
8
structural variations
8
protein aggregation
8
aggregation
7

Similar Publications

Lipidated analogues of glucagon-like peptide 1 (GLP-1) have gained enormous attention as long-acting peptide therapeutics for type 2 diabetes and also antiobesity treatment. Commercially available therapeutic lipidated GLP-1 analogues, semaglutide and liraglutide, have the great advantage of prolonged half-lives of hours and days instead of minutes as is the case for native GLP-1. A crucial factor in the development of novel lipidated therapeutic peptides is their physical stability, which greatly influences manufacturing and drug product development.

View Article and Find Full Text PDF

Unlabelled: Despite some skepticism regarding the amyloid hypothesis, there is growing evidence that clearing amyloid by targeting specific species of amyloid (plaque, oligomers, fibrils, and protofibrils) for removal has therapeutic benefits. Specifically, there is growing evidence that, in mild cognitive impairment and mild dementia due to Alzheimer's disease (AD), robust and aggressive removal of amyloid can slow cognitive decline as measured by global instruments, composite measures, and cognitive testing. Furthermore, clinical efficacy signals coupled with clear biomarker changes provide the first evidence of disease modification.

View Article and Find Full Text PDF

Charge Modification of Lysine Mitigates Amyloid-β Aggregation.

Chembiochem

January 2025

Yonsei University, Deparment of Pharmacy, 85 Songdogwahak-ro, Yeonsu-gu, Yonsei University, Veritas Hall D411, 21983, Incheon, KOREA, REPUBLIC OF.

Alzheimer's disease (AD) is a progressive neurodegenerative condition characterized by the deposition of amyloid-β (Aβ) peptides, which aggregate into toxic structures such as oligomers, fibrils, and plaques. The presence of these Aβ aggregates in the brain plays a crucial role in the pathophysiology, leading to synaptic dysfunction and cognitive impairment. Understanding how physiological factors affect Aβ aggregation is essential, and therefore, exploring their influence in vitro will likely provide insights into their role in AD pathology.

View Article and Find Full Text PDF

Molecular rotor-based fluorophores (RBFs) that are target-selective and sensitive to both polarity and viscosity are valuable for diverse biological applications. Here, we have designed next-generation RBFs based on the underexplored bimane fluorophore through either changing in aryl substitution or varying π-linkages between the rotatable electron donors and acceptors to produce red-shifted fluorescence emissions with large Stokes shifts. RBFs exhibit a twisted intramolecular charge transfer mechanism that enables control of polarity and viscosity sensitivity, as well as target selectivity.

View Article and Find Full Text PDF

Aggregation intermediates play a pivotal role in the assembly of amyloid fibrils, which are central to the pathogenesis of neurodegenerative diseases. The structures of filamentous intermediates and mature fibrils are now efficiently determined by single-particle cryo-electron microscopy. By contrast, smaller pre-fibrillar α-Synuclein (αS) oligomers, crucial for initiating amyloidogenesis, remain largely uncharacterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!