Background/aim: The importance of hadron therapy in the cancer management is growing. We aimed to refine the biological effect detection using a vertebrate model.

Materials And Methods: Embryos at 24 and 72 h postfertilization were irradiated at the entrance plateau and the mid spread-out Bragg peak of a 150 MeV proton beam and with reference photons. Radiation-induced DNA double-strand breaks (DSB) and histopathological changes of the eye, muscles and brain were evaluated; deterioration of specific organs (eye, yolk sac, body) was measured.

Results: More and longer-lasting DSBs occurred in eye and muscle cells due to proton versus photon beams, albeit in different numbers. Edema, necrosis and tissue disorganization, (especially in the eye) were observed. Dose-dependent morphological deteriorations were detected at ≥10 Gy dose levels, with relative biological effectiveness between 0.99±0.07 (length) and 1.12±0.19 (eye).

Conclusion: Quantitative assessment of radiation induced changes in zebrafish embryos proved to be beneficial for the radiobiological characterization of proton beams.

Download full-text PDF

Source
http://dx.doi.org/10.21873/anticanres.14633DOI Listing

Publication Analysis

Top Keywords

dose-dependent changes
4
proton
4
changes proton
4
proton photon
4
photon irradiation
4
irradiation zebrafish
4
zebrafish model
4
model background/aim
4
background/aim hadron
4
hadron therapy
4

Similar Publications

Aim: Somatostatin from pancreatic δ-cells is a paracrine regulator of insulin and glucagon secretion, but the release kinetics and whether secretion is altered in diabetes is unclear. This study aimed to improve understanding of somatostatin secretion by developing a tool for real-time detection of somatostatin release from individual pancreatic islets.

Methods: Reporter cells responding to somatostatin with cytoplasmic Ca concentration ([Ca]) changes were generated by co-expressing somatostatin receptor SSTR2, the G-protein Gα15 and a fluorescent Ca sensor in HeLa cells.

View Article and Find Full Text PDF

Quinoa saponins can inhibit the survival of specific cancer cells. However, there is still a lack of systematic research on the effects of quinoa saponins on colon cancer cells. This experiment confirmed that quinoa saponins prevented human colon cancer HT-29 cells from growing in vitro.

View Article and Find Full Text PDF

Objective: Nonproliferative diabetic retinopathy (NPDR) is a progressive disease that can lead to blindness. Current therapies for NPDR are invasive and not extensively used or accessible until the disease progresses, pointing to the need for an early noninvasive treatment. The objective of CANBERRA was to assess the safety, tolerability, and efficacy of oral administration of vicasinabin (RG7774) on the severity of diabetic retinopathy (DR) in participants with moderately severe to severe NPDR and good vision.

View Article and Find Full Text PDF

The kinetically-derived maximal dose (KMD) is defined as the maximum external dose at which kinetics are unchanged relative to lower doses, e.g., doses at which kinetic processes are not saturated.

View Article and Find Full Text PDF

Background & Aims: A common genetic variant (rs738409) encoding isoleucine to methionine at position 148 in the PNPLA3 protein is a determinant of hepatic steatosis, inflammation, fibrosis, cirrhosis, and liver-related mortality. AZD2693 is a liver-targeted antisense oligonucleotide against PNPLA3 mRNA. We evaluated the safety, tolerability, pharmacokinetics, and pharmacodynamics in single ascending dose (SAD) and multiple ascending dose (MAD) studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!