In various human cancers, PI3Ks pathway is ubiquitously dysregulated and thus become a promising anti-cancer target. To discover new potent and selective PI3K inhibitors as potential anticancer drugs, new pyrrolo[2,1-f][1,2,4]triazines were designed, leading to the discovery of compound 37 (CYH33), a selective PI3Kα inhibitor (IC = 5.9 nM, β/α, δ/α,γ/α = 101-, 13-, 38-fold). Western blot analysis confirmed that compound 37 could inhibit phosphorylation of AKT in human cancer cells to modulate the cellular PI3K/AKT/mTOR pathway. And further evaluation in vivo against SKOV-3 xenograft models demonstrated that a dose-dependent antitumor efficacy was achieved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2020.112913 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!