Background: Stroke is a leading cause of disability with associated hemiparesis resulting in difficulty bearing and transferring weight on to the paretic limb. Difficulties in weight bearing and weight transfer may result in impaired mobility and balance, increased fall risk, and decreased community engagement. Despite considerable efforts aimed at improving weight transfer after stroke, impairments in its neuromotor and biomechanical control remain poorly understood. In the present study, a novel experimental paradigm was used to characterize differences in weight transfer biomechanics in individuals with chronic stroke versus able-bodied controls METHODS: Fifteen participants with stroke and fifteen age-matched able-bodied controls participated in the study. Participants stood with one foot on each of two custom built platforms. One of the platforms dropped 4.3 cm vertically to induce lateral weight transfer and weight bearing. Trials involving a drop of the platform beneath the paretic lower extremity (non-dominant limb for control) were included in the analyses. Paretic lower extremity joint kinematics, vertical ground reaction forces, and center of pressure velocity were measured. All participants completed the clinical Step Test and Four-Square Step Test.
Results: Reduced paretic ankle, knee, and hip joint angular displacement and velocity, delayed ankle and knee inter-joint timing, increased downward displacement of center of mass, and increased center of pressure (COP) velocity stabilization time were exhibited in the stroke group compared to the control group. In addition, paretic COP velocity stabilization time during induced weight transfer predicted Four-Square Step Test scores in individuals post-stroke.
Conclusions: The induced weight transfer approach identified stroke-related abnormalities in the control of weight transfer towards the paretic limb side compared to controls. Decreased joint flexion of the paretic ankle and knee, altered inter-joint timing, and increased COP stabilization times may reflect difficulties in neuromuscular control during weight transfer following stroke. Future work will investigate the potential of improving functional weight transfer through induced weight transfer training exercise.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7590464 | PMC |
http://dx.doi.org/10.1186/s12984-020-00768-1 | DOI Listing |
Cancer Lett
January 2025
Department of Radiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China, 210029; The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, Jiangsu Province, China. Electronic address:
Preoperative detection of muscle-invasive bladder cancer (MIBC) remains a great challenge in practice. We aimed to develop and validate a deep Vesical Imaging Network (ViNet) model for the detection of MIBC using high-resolution Tweighted MR imaging (hrTWI) in a multicenter cohort. ViNet was designed using a modified 3D ResNet, in which, the encoder layers were pretrained using a self-supervised foundation model on over 40,000 cross-modal imaging datasets for transfer learning, and the classification modules were weakly supervised by an experiential knowledge-domain mask indicated by a nnUNet segmentation model.
View Article and Find Full Text PDFPharm Dev Technol
January 2025
Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhavnagar, Manipal - 576104, Karnataka, India.
Purpose: Supersaturated formulations have been widely explored for improving the oral bioavailability of drugs by using mesoporous silica (MS) to generate supersaturation via molecular adsorption; however, this is followed by precipitation. Several precipitation inhibitors (PI) have been explored to prevent precipitation and maintain the drug in solution for a longer period. However, the combined approach of MS and PIs, the impact of MS and Silica, and the loading of high-molecular-weight neutral molecules such as Cyclosporine A (CsA) have not yet been explored.
View Article and Find Full Text PDFJ Magn Reson
December 2024
Department of Medicine, University of Alberta, Canada; Department of Biochemistry, University of Alberta, Canada. Electronic address:
Solution NMR studies of large systems are hampered by rapid signal decay. We hereby introduce ROCSY (relaxation-optimized total correlation spectroscopy), which maximizes transfer efficiency across J-coupling-connected spin networks by minimizing the amount of time magnetization spends in the transverse plane. Hard pulses are substituted into the Clean-CITY TOCSY pulse element first developed by Ernst and co-workers, allowing for longer delays in which magnetization is aligned along the z-axis.
View Article and Find Full Text PDFJ Reconstr Microsurg
December 2024
Division of Reconstructive Microsurgery Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
Background: High-level median or ulnar nerve injuries and repairs typically result in suboptimal re-innervation of distal muscles. Functioning Free Muscle Transplantation (FFMT) is increasingly recognized as an effective method to restore function in chronic muscle denervation cases. This study investigates the efficacy of using an additional FFMT, neurotized by lateral sprouting axons from a repaired high-level mixed nerve in the upper limb, to enhance distal hand function.
View Article and Find Full Text PDFTunis Med
December 2024
Felix Houphouët Boigny University - Medical Sciences Department .Rheumatology Department, Cocody University Hospital, Abidjan, Republic of Côte d'Ivoire.
Aim: describe the epidemiological, clinical, etiological and therapeutic aspects of hypercalcemia seen in the rheumatology department of Cocody University Hospital.
Methods: Descriptive cross-sectional study carried out in the rheumatology department of Cocody University Hospital from January 2013 to July 2022 and covering the files of patients with hypercalcemia.
Results: The hospital frequency of hypercalcemia was 0.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!