Basal Feet: Walking to the Discovery of a Novel Hybrid Cilium.

Dev Cell

Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA. Electronic address:

Published: October 2020

Cilia are important cell structures found on nearly all cells. In this issue of Developmental Cell, Mennella and colleagues investigate the molecular architecture of basal foot proteins in cells with primary or motile cilia and discover a hybrid cilium with a unique assembly that regulates polarity in multiciliated cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.devcel.2020.09.018DOI Listing

Publication Analysis

Top Keywords

hybrid cilium
8
basal feet
4
feet walking
4
walking discovery
4
discovery novel
4
novel hybrid
4
cilium cilia
4
cilia cell
4
cell structures
4
structures cells
4

Similar Publications

Biomagnetic fluid dynamics (BFD) is an emerging and promising field within fluid mechanics, focusing on the dynamics of bio-fluids like blood in the presence of magnetic fields. This research is crucial in the medical arena for applications such as medication delivery, diagnostic and therapeutic procedures, prevention of excessive bleeding, and treatment of malignant tumors using magnetic particles. This study delves into the intricacies of blood flow induced by cilia, carrying trihybrid nanoparticles (gold, copper, and titania), within a catheterized arterial annulus under a robust magnetic field.

View Article and Find Full Text PDF

The current investigation explores tri-hybrid mediated blood flow through a ciliary annular model, designed to emulate an endoscopic environment. The human circulatory system, driven by the metachronal ciliary waves, is examined in this study to understand how ternary nanoparticles influence wave-like flow dynamics in the presence of interfacial nanolayers. We also analyze the effect of an induced magnetic field on Ag-Cu-/blood flow within the annulus, focusing on thermal radiation, heat sources, buoyancy forces and ciliary motion.

View Article and Find Full Text PDF

Identifying the roles of miR-17 in ciliogenesis and cell cycle.

Front Cell Dev Biol

August 2024

Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA, United States.

Emerging evidence suggests a significant contribution of primary cilia to cell division and proliferation. MicroRNAs, especially miR-17, contribute to cell cycle regulation and proliferation. Recent investigations have highlighted the dysregulated expression of miR-17 in various malignancies, underlining its potential role in cancer.

View Article and Find Full Text PDF

Biomimetic artificial olfactory cilia have demonstrated potential in identifying specific volatile organic compounds linked to various diseases, including certain cancers, metabolic disorders, and respiratory conditions. These sensors may facilitate non-invasive disease diagnosis and monitoring. Cilia Motility is the coordinated movement of cilia, which are hair-like projections present on the surface of particular cells in different species.

View Article and Find Full Text PDF

Melanin-concentrating hormone (MCH) neurons can co-express several neuropeptides or neurotransmitters and send widespread projections throughout the brain. Notably, there is a dense cluster of nerve terminals from MCH neurons in the lateral septum (LS) that innervate LS cells by glutamate release. The LS is also a key region integrating stress- and anxiety-like behaviours, which are also emerging roles of MCH neurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!