A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionmgb94bhf91mesen7ffch4e108q2ko08a): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed!

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An Easy-to-Use Machine Learning Model to Predict the Prognosis of Patients With COVID-19: Retrospective Cohort Study. | LitMetric

AI Article Synopsis

  • The study aimed to create a machine learning model to predict which COVID-19 patients would need intensive care using simple data like demographics, health conditions, and symptoms, rather than complex tests that might be hard to access.
  • Researchers collected data from nearly 5,000 patients across 100 hospitals in South Korea during early 2020, dividing them into groups for developing and validating the prediction model.
  • The best prediction model showed strong performance in identifying patients needing intensive care and was compared with an existing score (CURB-65), demonstrating its effectiveness in real-world scenarios.

Article Abstract

Background: Prioritizing patients in need of intensive care is necessary to reduce the mortality rate during the COVID-19 pandemic. Although several scoring methods have been introduced, many require laboratory or radiographic findings that are not always easily available.

Objective: The purpose of this study was to develop a machine learning model that predicts the need for intensive care for patients with COVID-19 using easily obtainable characteristics-baseline demographics, comorbidities, and symptoms.

Methods: A retrospective study was performed using a nationwide cohort in South Korea. Patients admitted to 100 hospitals from January 25, 2020, to June 3, 2020, were included. Patient information was collected retrospectively by the attending physicians in each hospital and uploaded to an online case report form. Variables that could be easily provided were extracted. The variables were age, sex, smoking history, body temperature, comorbidities, activities of daily living, and symptoms. The primary outcome was the need for intensive care, defined as admission to the intensive care unit, use of extracorporeal life support, mechanical ventilation, vasopressors, or death within 30 days of hospitalization. Patients admitted until March 20, 2020, were included in the derivation group to develop prediction models using an automated machine learning technique. The models were externally validated in patients admitted after March 21, 2020. The machine learning model with the best discrimination performance was selected and compared against the CURB-65 (confusion, urea, respiratory rate, blood pressure, and 65 years of age or older) score using the area under the receiver operating characteristic curve (AUC).

Results: A total of 4787 patients were included in the analysis, of which 3294 were assigned to the derivation group and 1493 to the validation group. Among the 4787 patients, 460 (9.6%) patients needed intensive care. Of the 55 machine learning models developed, the XGBoost model revealed the highest discrimination performance. The AUC of the XGBoost model was 0.897 (95% CI 0.877-0.917) for the derivation group and 0.885 (95% CI 0.855-0.915) for the validation group. Both the AUCs were superior to those of CURB-65, which were 0.836 (95% CI 0.825-0.847) and 0.843 (95% CI 0.829-0.857), respectively.

Conclusions: We developed a machine learning model comprising simple patient-provided characteristics, which can efficiently predict the need for intensive care among patients with COVID-19.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7655730PMC
http://dx.doi.org/10.2196/24225DOI Listing

Publication Analysis

Top Keywords

machine learning
24
intensive care
24
learning model
16
patients covid-19
12
patients admitted
12
derivation group
12
patients
10
care patients
8
2020 included
8
admitted march
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!