Slow Crystal Growth of Cubic Ice with Stacking Faults in a Glassy Dilute Glycerol Aqueous Solution.

J Phys Chem Lett

Research Institute for Material and Chemical Measurement, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, Higashi 1-1-1, Tsukuba, Ibaraki 305-8565, Japan.

Published: November 2020

Control of ice formation is an important issue as catastrophic ice growth influences our life activities and many industrial systems. We prepared a homogeneous glass of a dilute glycerol aqueous solution by a pressure liquid cooling vitrification method and examined the effect of solute on the ice formation of solvent water using a powder X-ray diffraction method. The solvent water immediately after the crystallization is composed of nanosized pure cubic ice (ice Ic). The crystal growth of ice Ic with stacking faults is much slower than that of pure water. The presence of glycerol molecules dispersing homogeneously may hinder crystal growth. The macroscopic segregation occurs rapidly during the transformation from stacking disordered ice to hexagonal ice. The results suggest that ice formation can be controlled by changing the solute type and concentration. This study has implications for thawing technology in cryobiology and frozen food engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.0c02716DOI Listing

Publication Analysis

Top Keywords

crystal growth
12
ice formation
12
ice
10
cubic ice
8
ice stacking
8
stacking faults
8
dilute glycerol
8
glycerol aqueous
8
aqueous solution
8
solvent water
8

Similar Publications

Interfacial solar vapor generation (ISVG) accompanied by photocatalytic degradation holds immense potential to mitigate water scarcity and pollution. Distinct from the two detached functional components (photothermal agent and photocatalyst) in a conventional evaporator, in this study, an all-in-one photothermal/catalytic agent, nitrogen-containing honeycomb carbon nanosheets (NHC), was engineered for synergistic high-efficiency steam generation and photocatalysis functions. It was demonstrated that the superoxide radical generated on the surface of NHC conferred its catalytic activity to the photodegradation of organic pollutants under full solar spectrum irradiation.

View Article and Find Full Text PDF

Polyethylene oxide (PEO)-based electrolytes are essential to advance all-solid-state lithium batteries (ASSLBs) with high safety/energy density due to their inherent flexibility and scalability. However, the inefficient Li+ transport in PEO often leads to poor rate performance and diminished stability of the ASSLBs. The regulation of intermolecular H-bonds is regarded as one of the most effective approaches to enable efficient Li+ transport, while the practical performances are hindered by the electrochemical instability of free H-bond donors and the constrained mobility of highly ordered H-bonding structures.

View Article and Find Full Text PDF

Surface Template Realizing Oriented Perovskites for Highly Efficient Solar Cells.

Adv Mater

January 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China.

Formamidinium lead iodide (FAPbI) perovskite films, ensuring optically active phase purity with uniform crystal orientation, are ideal for photovoltaic applications. However, the optically active α-FAPbI phase is easy to degrade into δ-phase due to numerous defects within randomly oriented films. Here, a "quasi-2D" perovskite template is pre-deposited on the film surface within the crystallization process based on the two-step preparation technology, which directly induced pure and highly orientated crystallization of α-FAPbI across the downward growth process.

View Article and Find Full Text PDF

Nucleation-Controlled Crystallization of Chiral 2D Perovskite Single Crystal Thin Films for High-Sensitivity Circularly Polarized Light Detection.

Adv Mater

January 2025

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.

2D Dion-Jacobson (DJ) chiral perovskite materials exhibit significant promise for developing high-performance circularly polarized light (CPL) photodetectors. However, the inherently thick nature of DJ-phase 2D perovskite single crystal limits their ability to differentiate CPL photons with the two opposite polarization states. In addition, the growth of DJ-phase perovskite single crystal thin films (SCTFs) has proven challenging due to the strong interlayer electronic coupling.

View Article and Find Full Text PDF

Interfacial seed-assisted FAPbI crystallization and phase stabilization enhance the performance of all-air-processed perovskite solar cells.

Dalton Trans

January 2025

State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.

Formamidinium lead triiodide (FAPbI) has received significant attention in the field of perovskite solar cells (PSCs) owing to its excellent optoelectronic properties and high thermal stability. However, the photoactive α-FAPbI perovskites are highly susceptible to degradation into non-perovskite δ-FAPbI phases, especially under humid conditions, which severely diminishes the device performance of FAPbI PSCs. Here, we propose an interfacial seeding strategy for regulating crystallization and stabilizing α-FAPbI perovskites in humid air.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!