Engineering Fe-N Doped Graphene to Mimic Biological Functions of NADPH Oxidase in Cells.

J Am Chem Soc

State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X), Collaborative innovation Center of radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China.

Published: November 2020

NADPH oxidase (NOX) as a transmembrane enzyme complex controls the generation of superoxide that plays important roles in immune signaling pathway. NOX inactivation may elicit immunodeficiency and cause chronic granulomatous disease (CGD). Biocompatible synthetic materials with NOX-like activities would therefore be interesting as curative and/or preventive approaches in case of NOX deficiency. Herein, we synthesized a Fe-N doped graphene (FeNGR) nanomaterial that could mimic the activity of NOX by efficiently catalyzing the conversion of NADPH into NADP and triggering the generation of oxygen radicals. The resulting FeNGR nanozyme had similar cellular distribution to NOX and is able to mimic the enzyme function in NOX-deficient cells by catalyzing the generation of superoxide and retrieving the immune activity, evidenced by TNF-α, IL-1β, and IL-6 production in response to Alum exposure. Overall, our study discovered a synthetic material (FeNGR) to mimic NOX and demonstrated its biological function in immune activation of NOX-deficient cells.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.0c08360DOI Listing

Publication Analysis

Top Keywords

fe-n doped
8
doped graphene
8
nadph oxidase
8
generation superoxide
8
nox-deficient cells
8
nox
6
engineering fe-n
4
mimic
4
graphene mimic
4
mimic biological
4

Similar Publications

A potential non-precious metal catalyst for oxygen reduction reaction should contain metal-N moieties. However, most of the current strategies to regulate the distances between neighboring metal sites are not pre-designed but depend on the probability by tuning the metal loading or the support. Herein, we report a general method for the synthesis of neighboring metal-N moieties (metal = Fe, Cu, Co, Ni, Zn, and Mn) via an interfacial-fixing strategy.

View Article and Find Full Text PDF

The dual-site electrocatalysts formed by metal single atoms combines with metal nanoparticles represent a promising strategy to enhance both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) performance. Herein, defect engineering is applied to dual-site ORR and OER electrocatalysts. Its design, synthesis, structural properties, and catalytic performance experimentally and theoretically are insightfully studied for the single-atomic Fe─N and the adjacent FeCo nanoalloy (FeCo) as dual-site loading on nitrogen-doped graphene aerogel (Fe─N/FeCo@NGA).

View Article and Find Full Text PDF

Hf Doping Boosts the Excellent Activity and Durability of Fe-N-C Catalysts for Oxygen Reduction Reaction and Li-O Batteries.

Nanomaterials (Basel)

December 2024

The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.

Developing highly active and durable non-noble metal catalysts is crucial for energy conversion and storage, especially for proton exchange membrane fuel cells (PEMFCs) and lithium-oxygen (Li-O) batteries. Non-noble metal catalysts are considered the greatest potential candidates to replace noble metal catalysts in PEMFCs and Li-O batteries. Herein, we propose a novel type of non-noble metal catalyst (Fe-Hf/N/C) doped with Hf into a mesoporous carbon material derived from Hf-ZIF-8 and co-doping with Fe and N, which greatly enhanced the activity and durability of the catalyst.

View Article and Find Full Text PDF

Due to the high catalytic activity and stability for oxygen reduction reaction, N-coordinated Fe-Cu dual-metal doped carbon material (FeCu-N-C) is considered to be one of the promising electrode materials for metal-air battery and fuel cells. Herein, FeCu-N-C dual-metal catalysts was synthesized by an adsorption-calcination strategy. The prepared FeCu-N-C exhibited high activity and stability both in alkaline and acidic media.

View Article and Find Full Text PDF

The rational design of metal-nitrogen-doped carbons (M-N-C) from available and cost-effective sources featuring high electrocatalytic performance and stability is attractive for the development of viable low-temperature fuel cells. Herein, mimosa tannin, an abundant polyphenol easily extracted from the Mimosa plant, is used as a natural carbon source to produce a tannin-Fe(III) coordination complex. This process is assisted by Pluronic F127, which acts as both a surfactant and a promoter of Fe-N active sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!