Despite extensive research on small molecule thrombin inhibitors for oral application in the past decades, only a single double prodrug with very modest oral bioavailability has reached human therapy as a marketed drug. We have undertaken major efforts to identify neutral, non-prodrug inhibitors. Using a holistic analysis of all available internal data, we were able to build computational models and apply these for the selection of a lead series with the highest possibility of achieving oral bioavailability. In our design, we relied on protein structure knowledge to address potency and identified a small window of favorable physicochemical properties to balance absorption and metabolic stability. Protein structure information on the pregnane X receptor helped in overcoming a persistent cytochrome P450 3A4 induction problem. The selected compound series was optimized to a highly potent, neutral, non-prodrug thrombin inhibitor by designing, synthesizing, and testing derivatives. The resulting optimized compound, BAY1217224, has reached first clinical trials, which have confirmed the desired pharmacokinetic properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jmedchem.0c01035 | DOI Listing |
J Med Chem
November 2020
Research and Development, Bayer AG, Pharmaceuticals, 42103 Wuppertal, Germany.
Despite extensive research on small molecule thrombin inhibitors for oral application in the past decades, only a single double prodrug with very modest oral bioavailability has reached human therapy as a marketed drug. We have undertaken major efforts to identify neutral, non-prodrug inhibitors. Using a holistic analysis of all available internal data, we were able to build computational models and apply these for the selection of a lead series with the highest possibility of achieving oral bioavailability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!