In this paper, we present the design and operation of a solid-core/liquid-cladding (SL) waveguide excited by an evanescent wave. To do this, an optical fiber is integrated into a microfluidic channel and pumped along the fiber axis, ensuring the cladding solution is excited by the evanescent field of the guided mode at the core/cladding interface. The pump beam is guided by the total internal reflection in the fiber, providing a uniform excitation along the microfluidic channel. The evanescent wave provides precise excitation to the dye molecules in close proximity to the core/cladding interface, which significantly reduces the background fluorescence and increases the signal-to-noise ratio. Fluorescence intensity measurements of different dye concentrations and refractive indices of the cladding solution are conducted to evaluate their influences on the propagation loss, which shows that the peak intensity propagation loss can be as low as about 0.1 dB/cm. We further exemplify that the intensity of the fluorescence emission and the dye concentration show good linearity when the dye is in the low concentration region (<250 μM). A broad-band and simultaneous light source with a single pump light is also demonstrated by employing cascade SL waveguide segments through fluorescence resonance energy transfer. The proposed SL waveguide demonstrates excellent robustness and is easy to fabricate and use, providing a versatile platform for a variety of applications, such as high-sensitivity detection of low-concentration samples, multiband on-chip light sources, and simultaneous measurement of multiplexed parameters.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.0c02848DOI Listing

Publication Analysis

Top Keywords

evanescent wave
12
solid-core/liquid-cladding waveguide
8
excited evanescent
8
microfluidic channel
8
cladding solution
8
core/cladding interface
8
propagation loss
8
versatile optofluidic
4
optofluidic solid-core/liquid-cladding
4
waveguide based
4

Similar Publications

We demonstrate the heterogeneous integration of GaInAsSb-GaSb photodiodes on 220 nm SOI photonic integrated circuits (PICs) using the micro-transfer-printing (μTP) technology, for operation in the short-wave infrared (SWIR) wavelength region. Utilizing an evanescent coupling scheme between a silicon waveguide and a III-V structure, the device exhibits a room temperature responsivity of 1.23 and 1.

View Article and Find Full Text PDF

The intermediate phase produced by the complexation of metal ions and solvent molecules usually occurs in the crystallization process of perovskite single crystal or film. Effective monitoring of intermediate-phase evolution is beneficial to the control of crystal quality. However, it is difficult to realize.

View Article and Find Full Text PDF

Metasurfaces have demonstrated significant potential in optical encryption and anti-counterfeiting due to their incredible capability of manipulating various light properties. However, previous metasurface-encryption methods did not sufficiently explore the spatial frequency aspect, particularly regarding evanescent waves. Here, we propose an encryption scheme by introducing evanescent waves into the encoding and decoding processes.

View Article and Find Full Text PDF

We present an all-fiber-based laser gas analyzer (LGA) employing quartz-enhanced photoacoustic spectroscopy (QEPAS) and a side-polished fiber (SPF). The LGA comprises a custom quartz tuning fork (QTF) with 0.8 mm prong spacing, two acoustic micro-resonators (mR) located on either side of the prong spacing, and a single-mode fiber containing a 17 mm polished section passing through both mRs and QTF.

View Article and Find Full Text PDF

Dual-resonance optical fiber lossy mode resonance immunoprobe for serum PSA detection.

Biosens Bioelectron

March 2025

School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China.

Biomarker detection has emerged as an essential complementary approach for early-stage screening of tumors. Conventional methods are constrained by bulky systems, cumbersome operation steps, and low detection accuracy. Here, we demonstrate a dual-resonance optimally configured lossy mode resonance (LMR) immunoprobe for detecting prostate-specific antigen (PSA), a biomarker for prostate cancer (PCa).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!