Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Persistent air leaks after thoracic trauma are associated with significant morbidity. To evaluate a novel pectin sealant in a swine model of traumatic air leaks, we compared a pectin biopolymer with standard surgical and fibrin-based interventions.
Methods: A standardized lung injury was created in male Yorkshire swine. Interventions were randomized to stapled wedge resection (n = 5), topical fibrin glue (n = 5), fibrin patch (n = 5), and a pectin sealant (n = 6). Baseline, preintervention and postintervention tidal volumes (TV) were recorded. Early success was defined as the return to near-normal TV (>95% of baseline). Late success was defined as no detectable air leak in the chest tube after chest closure.
Results: There were no differences in injury severity between groups (mean TV loss, 62 ± 17 mL, p = 0.2). Early success was appreciated in 100% (n = 6) of the pectin interventions which was significantly better than the fibrin sealant (20%, n = 1), fibrin patch (20%, n = 1), and stapled groups (80%, n = 4, p = 0.01). The percent of return to baseline TV after sealant intervention was significantly increased in the pectin (98%) and staple arms (97%) compared with the fibrin sealant (91%) and fibrin patch arms (90%) (p = 0.02; p = 0.03). Late success was also improved with the pectin sealant: no air leak was detected in 83% of the pectin group compared with 40% in the stapled group (p = 0.008)-90% of the fibrin-based interventions resulted in continuous air leaks (p = 0.001).
Conclusion: Pectin-based bioadhesives effectively seal traumatic air leaks upon application in a porcine model. Further testing is warranted as they may provide a superior parenchymal-sparing treatment option for traumatic air leaks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7830739 | PMC |
http://dx.doi.org/10.1097/TA.0000000000002754 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!