In this study, rice straw was used to prepare biomass carbon, which was modified with KOH and cetyltrimethylammonium bromide (CTAB) to obtain modified biomass carbon (MBC). The biomass carbon (BC) before and after modification was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FT-IR), and the surface morphology, crystal structure and surface group characteristic BC were explored. The specific surface area and micropores of the modified biomass carbon increased significantly, the crystallinity was higher, and the pore structure was more clearly found. The adsorption performance of MBC for 2,4-dichlorophenol (2,4-DCP) was investigated. The results showed that under the best adsorption conditions ((2,4-DCP concentration (200 mg/L), MBC dosage (50 mg), pH (5.5), and loading time (60 min), temperature (room temperature)), the removal rate of 2,4-DCP was up to 42.5%, and adsorption capacity was 85.13 mg/g. The adsorption of 2,4-DCP on MBC materials was better explained by the pseudo-second-order kinetic model and the Langmuir adsorption isotherm model. It was believed that the adsorption of 2,4-DCP by MBC was the monolayer adsorption process on the uniform surface of MBC at high concentration, and there was no interaction between the 2,4-DCP and MBC adsorbate during this process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2020.418 | DOI Listing |
Chem Sci
January 2025
BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University Chengdu Sichuan 610065 China
Single-atom catalysts (SACs) dispersed on support materials exhibit exceptional catalytic properties that can be fine-tuned through interactions between the single atoms and the support. However, selectively controlling the spatial location of single metal atoms while simultaneously harmonizing their coordination environment remains a significant challenge. Here, we present a phenolic-mediated interfacial anchoring (PIA) strategy to prepare SACs with Fe single atoms anchored on the surface of heteroatom-doped carbon nanospheres.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147004, India.
Deep eutectic solvents (DESs) have attracted significant attention in recent years due to its environment friendly characteristics and its participation in the multi-heteroatom doping of carbon quantum dots (CQDs). In this work, we present a simple, fast, and environment-friendly microwave synthesis approach for the synthesis of DES-assisted nitrogen and chloride co-doped CQDs (N,Cl-CQDs) using a choline chloride-urea based DES. A biomass-based precursor, i.
View Article and Find Full Text PDFPhysiol Plant
January 2025
College of Geography and Environment, Shandong Normal University, Jinan, China.
Climate change has exacerbated precipitation variability, profoundly impacting vegetation dynamics and community structures in arid ecosystems. There remains a notable knowledge gap regarding the ecological effects of altered precipitation on crassulacean acid metabolism (CAM) plants and their interactions with other photosynthetic types. This study investigated the response of the typical obligate CAM plant Orostachys fimbriata to extended watering intervals (WI4-WI8) and various competitive patterns (M-M) with the C grass Melilotus officinalis and the C grass Setaria viridis through greenhouse experiments.
View Article and Find Full Text PDFPaediatr Perinat Epidemiol
January 2025
Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA.
Background: Epidemiologic studies have demonstrated that ambient concentrations of particulate matter < 2.5 μm (PM) are associated with reduced fecundability, the per cycle probability of conception. The specific constituents driving this association are unknown.
View Article and Find Full Text PDFNat Food
January 2025
Plant Sciences, Gembloux Agro-Bio Tech, Liege University, Gembloux, Belgium.
Tibetan barley (Hordeum vulgare) accounts for over 70% of the total food production in the Tibetan Plateau. However, continuous cropping of Tibetan barley causes soil degradation, reduces soil quality and causes yield decline. Here we explore the benefits of crop rotation with wheat and rape to improve crop yield and soil quality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!