A hand-held Van de Graaf generator is used to apply a high voltage, negligible current electrostatic potential to a wire mesh positioned in close proximity to a particle-laden surface in order to collect those particles for analysis. The electrostatic field effects transfer particles to the mesh without a requirement for mechanical contact between mesh and surface. Analysis of chemicals present in the sampled particles is completed by thermal desorption electrospray ionization. The utility of the method for noncontact sampling is demonstrated using solid drug powder samples, and inorganic explosives dispersed either on solid surfaces or in sand/soil in order to simulate common interfering matrices that might be encountered in the forensic environment. A metal mesh sampling substrate is utilized instead of traditional polymer-based swabs in order to permit thermal desorption at higher temperatures. The method leaves no visible trace of sampling leaving details such as a fingerprint image unperturbed, as demonstrated using fluorescence photography. Direct sampling of trace particles from hard surfaces and skin documents flexibility in the choice of sampling substrates, desorption temperatures, and sampling times. The potential of the device for use in forensic analyses is detailed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jasms.0c00286DOI Listing

Publication Analysis

Top Keywords

thermal desorption
8
sampling
7
solvent-free noncontact
4
noncontact electrostatic
4
electrostatic sampling
4
sampling rapid
4
rapid analysis
4
analysis mass
4
mass spectrometry
4
spectrometry application
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!