AI Article Synopsis

  • Calcitriol and 9-cis retinoic acid (9cRA) significantly influence the adaptive immune response by affecting B cell differentiation and immunoglobulin (Ig) profiles through their nuclear receptors.
  • Research demonstrated that both compounds effectively induced the differentiation of naïve B cells into CD27 CD38 plasmablasts, leading to increased antibody secretion, particularly IgA.
  • The interaction between calcitriol and 9cRA suggests they work in an additive manner to regulate signals necessary for B cell differentiation and isotype switching, ultimately influencing the effectiveness of the immune response.

Article Abstract

Calcitriol and 9-cis retinoic acid (9cRA) play a fundamental role in shaping the adaptive immune response by altering the Ig profile and the differentiation of B cells, controlled by their corresponding nuclear receptors, VDR and RAR. Herein, after the establishment of a plasmablast differentiation culture, we investigated how both ligands modulate human naïve B cell differentiation and to which extent VDR/RXR and RAR/RXR signaling interferes. Calcitriol and 9cRA mediated activation of purified naïve B cells resulted in a strong differentiation of CD27 CD38 plasmablasts and antibody secretion. The significant IgA response was preceded by a strong induction of α-germline transcription (GLT). Induction of αGLT and consecutively IgA secretion driven by calcitriol is a novel observation and we show by magnetic chromatin IP that this was mediated by recruitment of the VDR to the TGF-β promoter thus inducing TGF-β expression. Finally, as revealed by transcriptomic profiling calcitriol and 9cRA modulate several signals required for differentiation and isotype switching in a noncompeting but rather additive manner. Calcitriol and 9cRA participate in the control of the IgA response in human activated naïve B cells. The balance between both ligands may be an important factor in channeling humoral immune responses toward a protective direction.

Download full-text PDF

Source
http://dx.doi.org/10.1002/eji.202048557DOI Listing

Publication Analysis

Top Keywords

naïve cells
12
calcitriol 9cra
12
9-cis retinoic
8
retinoic acid
8
human naïve
8
iga response
8
differentiation
6
calcitriol
5
acid 125-dihydroxyvitamin
4
125-dihydroxyvitamin drive
4

Similar Publications

Metal ions are indispensable to life, as they can serve as essential enzyme cofactors to drive fundamental biochemical reactions, yet paradoxically, excess is highly toxic. Higher-order cells have evolved functionally distinct organelles that separate and coordinate sophisticated biochemical processes to maintain cellular homeostasis upon metal ion stimuli. Here, we uncover the remodeling of subcellular architecture and organellar interactome in yeast initiated by several metal ion stimulations, relying on near-native three-dimensional imaging, cryo-soft X-ray tomography.

View Article and Find Full Text PDF

Boosting Natural Killer Cells' Immunotherapy with Amoxicillin-Loaded Liposomes.

Mol Pharm

January 2025

State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.

Natural killer (NK) cell immunotherapy is a significant category in tumor therapy due to its potent tumor-killing and immunomodulatory effects. This research delves into exploring the mechanisms underlying the ability of amoxicillin to boost NK cell cytotoxicity in NK cell immunotherapy. Amoxicillin significantly enhances the cytotoxic activity of NK-92MI cells against MCF-7 cells by triggering the initiation of a cytolytic program in target cell-deficient NK-92MI cells and augmenting the degranulation level of NK-92MI cells in the presence of target cells.

View Article and Find Full Text PDF

Regulating the Thermodynamic Uniformity and Kinetic Diffusion of Zinc Anodes for Deep Cycling of Ah-Level Aqueous Zinc-Metal Batteries.

ACS Nano

January 2025

Power Battery & Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

Zn metal anodes in mildly acidic electrolytes usually suffer from a series of problems, including parasitic dendrite growth and severe side reactions, significantly limiting the Zn utilization efficiency and cycling life. A deep understanding of the Zn stripping/plating process is essential to obtain high-efficiency and long-life Zn metal anodes. Here, the factors affecting the Zn stripping/plating process are revealed, suggesting that thermodynamic uniformity in bulk structures promotes an orderly Zn stripping process, and a fast kinetic diffusion rate on the Zn surface facilitates uniform Zn deposition.

View Article and Find Full Text PDF

Objective: Loss of function of the phospholipid scramblase (PLS) TMEM16F results in Scott Syndrome, a hereditary bleeding disorder generally attributed to intrinsic platelet dysfunction. The role of TMEM16F in endothelial cells, however, is not well understood. We sought to test the hypothesis that endothelial TMEM16F contributes to hemostasis by measuring bleeding time and venous clotting in endothelial-specific knockout (ECKO) mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!