Organic-inorganic perovskites were treated with a CsI solution to improve the photovoltaic performance and stability. Due to the formation of CsPbI3 and trap filling in Cs0.05(FA0.83MA0.17)0.95Pb(I0.83Br0.17)3 perovskites by CsI treatment, the power conversion efficiency was improved to 20.48%. The CsI-treated perovskites exhibited slower degradation under heating at 180 °C than the untreated perovskites.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0nr05435fDOI Listing

Publication Analysis

Top Keywords

improve photovoltaic
8
photovoltaic performance
8
cesium iodide
4
iodide post-treatment
4
post-treatment organic-inorganic
4
organic-inorganic perovskite
4
perovskite crystals
4
crystals improve
4
performance thermal
4
thermal stability
4

Similar Publications

A new aguanidine-based bis Schiff base for highly selective Al recognition, BSA binding studies and theoretical calculations.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

School of Agriculture and Bioengineering, Heze University, Heze 274500, China. Electronic address:

Herin, the successful synthesis of a bis Schiff base (L) has been achieved using 2-hydroxy-1-naphthaldehyde and 1,3-diaminoguanidine as raw materials, which was further characterized by infrared spectroscopy, mass spectrometry, and nuclear magnetic resonance hydrogen spectrum. Moreover, spectroscopic experiments demonstrated that the probe L showed good selectivity and visual detectability for Al. Its detection limit (DL) is 2.

View Article and Find Full Text PDF

The hot carrier multi-junction solar cell (HCMJC) is an advanced-concept solar cell with a theoretical efficiency greater than 65%. It combines the advantages of hot carrier solar cells and multi-junction solar cells with higher power conversion efficiency (PCE). The thermalization coefficient () has been shown to slow down by an order of magnitude in low-dimensional structures, which will significantly improve PCE.

View Article and Find Full Text PDF

Three new bithiophene imide (BTI)-based organic small molecules, (), (), and (), with varied alkyl side chains, were developed and employed as self-assembled monolayers (SAMs) applied to NiOx films in tin perovskite solar cells (TPSCs). The NiOx layer has the effect of modifying the hydrophilicity and the surface roughness of ITO for SAM to uniformly deposit on it. The side chains of the SAM molecules play a vital role in the formation of a high-quality perovskite layer in TPSCs.

View Article and Find Full Text PDF

Effective integrated thermal management using hygroscopic hydrogel for photovoltaic-thermoelectric applications.

J Colloid Interface Sci

December 2024

Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China. Electronic address:

As the proportion of solar energy in the global energy mix increases, photovoltaic cells have emerged as one of the fastest-growing technologies in the renewable energy sector. However, photovoltaics utilize only a limited portion of the incident solar spectrum, resulting in significant amounts of light energy being wasted as heat. This excess heat raises the surface temperature of photovoltaic cells, which in turn reduces their overall efficiency.

View Article and Find Full Text PDF

Contrasting responses of soil bacterial and fungal networks to photovoltaic power station.

Front Microbiol

December 2024

Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.

The rapid expansion of solar photovoltaic (PV) power generation raises concerns regarding its impact on terrestrial ecosystems. Although the influence of PV panels on soil conditions and plant biomass is acknowledged, their effects on the assembly processes and co-occurrence networks of soil microbial communities remain understudied. Clarifying this influence is crucial for understanding the effects of photovoltaic panels on soil ecosystem functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!