Tumor organoids mimic the architecture and heterogeneity of in vivo tumors and enable studies of collective interactions between tumor cells as well as with their surrounding microenvironment. Although tumor organoids hold significant promise as cancer models, they are also more costly and labor-intensive to cultivate than traditional 2D cell culture. We sought to identify critical factors regulating organoid growth ex vivo, and to use these observations to develop a more efficient organoid expansion method. Using time-lapse imaging of mouse mammary tumor organoids in 3D culture, we observed that outgrowth potential varies non-linearly with initial organoid size. Maximal outgrowth occurred in organoids with a starting size between ~10 to 1000 cells. Based on these observations, we developed a suspension culture method that maintains organoids in the ideal size range, enabling expansion from 1 million to over 100 million cells in less than 2 weeks and less than 3 hours of hands-on time. Our method facilitates the rapid, cost-effective expansion of organoids for CRISPR based studies and other assays requiring a large amount of organoid starting material.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7587543 | PMC |
http://dx.doi.org/10.1007/s10911-020-09464-1 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong 999077, China.
Ovarian cancer is the leading cause of death among all gynecological malignancies, and drug resistance renders the current chemotherapy agents ineffective for patients with advanced metastatic tumors. We report an effective treatment strategy for targeting metastatic ovarian cancer involving a nanoformulation (Bola/IM)─bola-amphiphilic dendrimer (Bola)-encapsulated imatinib (IM)─to target the critical mediator of ovarian cancer stem cells (CSCs) CD117 (c-Kit). Bola/IM offered significantly more effective targeting of CSCs compared to IM alone, through a novel and tumor-specific β-catenin/HRP2 axis, allowing potent inhibition of cancer cell survival, stemness, and metastasis in metastatic and drug-resistant ovarian cancer cells.
View Article and Find Full Text PDFElife
January 2025
Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
Cigarette smoking is a well-known risk factor inducing the development and progression of various diseases. Nicotine (NIC) is the major constituent of cigarette smoke. However, knowledge of the mechanism underlying the NIC-regulated stem cell functions is limited.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Molecular Medicine, University of Pavia, Pavia, Italy.
Background: Non-Small Cell Lung Cancer (NSCLC) is the leading cause of cancer death worldwide. Although immune checkpoint inhibitors (ICIs) have shown remarkable clinical efficacy, they can also induce a paradoxical cancer acceleration, known as hyperprogressive disease (HPD), whose causative mechanisms are still unclear.
Methods: This study investigated the mechanisms of ICI resistance in an HPD-NSCLC model.
Sci Rep
January 2025
Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu , Tokyo, 183-8509, Japan.
Organoids are stem cell-derived three-dimensional tissue cultures composed of multiple cell types that recapitulate the morphology and functions of their in vivo counterparts. Organ-on-a-chip devices are tiny chips with interconnected wells and channels designed using a perfusion system and microfluidics to precisely mimic the in vivo physiology and mechanical forces experienced by cells in the body. These techniques have recently been used to reproduce the structure and function of organs in vitro and are expected to be promising alternatives for animal experiments in the future.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
Colorectal cancer (CRC) is stratified into four consensus molecular subtypes (CMS1-4). CMS3 represents the metabolic subtype, but its wiring remains largely undefined. To identify the underlying tumorigenesis of CMS3, organoids derived from 16 genetically engineered mouse models are analyzed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!