Viral surface geometry shapes influenza and coronavirus spike evolution through antibody pressure.

bioRxiv

Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139.

Published: December 2020

The evolution of circulating viruses is shaped by their need to evade antibody response, which mainly targets the glycoprotein (spike). However, not all antigenic sites are targeted equally by antibodies, leading to complex immunodominance patterns. We used 3D computational models to estimate antibody pressure on the seasonal influenza H1N1 and SARS spikes. Analyzing publically available sequences, we show that antibody pressure, through the geometrical organization of spikes on the viral surface, shaped their mutability. Studying the mutability patterns of SARS-CoV-2 and the 2009 H1N1 pandemic spikes, we find that they are not predominantly shaped by antibody pressure. However, for SARS-CoV-2, we find that over time, it acquired mutations at antibody-accessible positions, which could indicate possible escape as define by our model. We offer a geometry-based approach to predict and rank the probability of surface resides of SARS-CoV-2 spike to acquire antibody escaping mutations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7587782PMC
http://dx.doi.org/10.1101/2020.10.20.347641DOI Listing

Publication Analysis

Top Keywords

antibody pressure
16
viral surface
8
antibody
6
surface geometry
4
geometry shapes
4
shapes influenza
4
influenza coronavirus
4
coronavirus spike
4
spike evolution
4
evolution antibody
4

Similar Publications

Background: Fabry disease is an X-linked lysosomal storage disorder due to a deficiency of α-galactosidase A (α-gal A) activity. Our goal was to correct the enzyme deficiency in Fabry patients by transferring the cDNA for α-gal A into their CD34+ hematopoietic stem/progenitor cells (HSPCs). Overexpression of α-gal A leads to secretion of the hydrolase; which can be taken up and used by uncorrected bystander cells.

View Article and Find Full Text PDF

A case of type 2 diabetes mellitus complicated with IgG4-related retroperitoneal fibrosis and a literature review.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

July 2024

Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha 410013, China.

IgG4-related disease (IgG4-RD) is an immune-mediated fibroinflammatory disorder that can affect multiple organs throughout the body, predominantly in middle-aged and elderly males, with a male-to-female ratio of 2꞉1 to 3꞉1. IgG4-related retroperitoneal fibrosis (IgG4-RPF), a rare subtype of IgG4-RD, has an unclear etiology, and its comorbidity with type 2 diabetes mellitus is also uncommon. A lack of awareness of this condition in clinical practice can easily lead to misdiagnosis.

View Article and Find Full Text PDF

Predicting purification process fit of monoclonal antibodies using machine learning.

MAbs

December 2025

Department of Purification, Microbiology and Virology, Genentech Inc, South San Francisco, CA, USA.

In early-stage development of therapeutic monoclonal antibodies, assessment of the viability and ease of their purification typically requires extensive experimentation. However, the work required for upstream protein expression and downstream purification development often conflicts with timeline pressures and material constraints, limiting the number of molecules and process conditions that can reasonably be assessed. Recently, high-throughput batch-binding screen data along with improved molecular descriptors have enabled development of robust quantitative structure-property relationship (QSPR) models that predict monoclonal antibody chromatographic binding behavior from the amino acid sequence.

View Article and Find Full Text PDF

Recent advancements in technology, such as the emergence of artificial intelligence (AI) and machine learning (ML), have facilitated the progression of the biopharmaceutical industry toward the implementation of Industry 4.0. As per the guidelines set by the USFDA, process validation for biopharmaceutical production consists of three stages: process design, process qualification, and continuous process verification (CPV).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!