Current methods for determining RNA structure with short-read sequencing cannot capture most differences between distinct transcript isoforms. Here we present RNA structure analysis using nanopore sequencing (PORE-cupine), which combines structure probing using chemical modifications with direct long-read RNA sequencing and machine learning to detect secondary structures in cellular RNAs. PORE-cupine also captures global structural features, such as RNA-binding-protein binding sites and reactivity differences at single-nucleotide variants. We show that shared sequences in different transcript isoforms of the same gene can fold into different structures, highlighting the importance of long-read sequencing for obtaining phase information. We also demonstrate that structural differences between transcript isoforms of the same gene lead to differences in translation efficiency. By revealing isoform-specific RNA structure, PORE-cupine will deepen understanding of the role of structures in controlling gene regulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41587-020-0712-z | DOI Listing |
PLoS Pathog
January 2025
State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
Virus-derived small interfering RNAs (vsiRNAs) have been widely recognized to play an antiviral immunity role. However, it is unclear whether vsiRNAs can also play a positive role in viral infection. Here, we characterized three highly abundant vsiRNAs mapped to the genomic termini of rice stripe virus (RSV), a negative-strand RNA virus transmitted by insect vectors.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
The Energy and Resources Institute, Lodi Road, New Delhi, 110003, India.
The major limiting factor of photosynthesis in C3 plants is the enzyme, rubisco which inadequately distinguishes between carbon dioxide and oxygen. To overcome catalytic deficiencies of Rubisco, cyanobacteria utilize advanced protein microcompartments, called the carboxysomes which envelopes the enzymes, Rubisco and Carbonic Anhydrase (CA). These microcompartments facilitate the diffusion of bicarbonate ions which are converted to CO by CA, following in an increase in carbon flux near Rubisco boosting CO fixation process.
View Article and Find Full Text PDFMol Genet Genomics
January 2025
Department of Botany, Biology Institute, UnB, Brasília, DF, 70910-900, Brazil.
Precursors of microRNAs (pre-miRNAs) are less used in silico to mine miRNAs. This study developed PmiR-Select based on covariance models (CMs) to identify new pre-miRNAs, detecting conserved secondary structural features across RNA sequences and eliminating the redundancy. The pipeline preceded PmiR-Select filtered 20% plant pre-miRNAs (from 38589 to 8677) from miRBase.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India.
Medicinal plants often harbour various endophytic actinomycetia, which are well known for their potent antimicrobial properties and plant growth-promoting traits. In this study, we isolated an endophytic actinomycetia, A13, from the leaves of tea clone P312 from the MEG Tea Estate, Meghalaya, India. The isolate A13 was identified as Streptomyces sp.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
German Center for Neurodegenerative Diseases (DZNE), Bonn, North Rhine-Westphalia, Germany.
Background: MicroRNAs have been linked to dementia. However, understanding their relation to cognition in the general population is required to determine their potential use for the detection and prevention of age-associated cognitive decline and preclinical dementia. Therefore, we examined the association of circulating microRNAs with cognitive performance in a population-based cohort and the possible underlying mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!