Momilactones from rice have allelopathic activity, the ability to inhibit growth of competing plants. Transferring momilactone production to other crops is a potential approach to combat weeds, yet a complete momilactone biosynthetic pathway remains elusive. Here, we address this challenge through rapid gene screening in Nicotiana benthamiana, a heterologous plant host. This required us to solve a central problem: diminishing intermediate and product yields remain a bottleneck for multistep diterpene pathways. We increased intermediate and product titers by rerouting diterpene biosynthesis from the chloroplast to the cytosolic, high-flux mevalonate pathway. This enabled the discovery and reconstitution of a complete route to momilactones (>10-fold yield improvement in production versus rice). Pure momilactone B isolated from N. benthamiana inhibited germination and root growth in Arabidopsis thaliana, validating allelopathic activity. We demonstrated the broad utility of this approach by applying it to forskolin, a Hedgehog inhibitor, and taxadiene, an intermediate in taxol biosynthesis (~10-fold improvement in production versus chloroplast expression).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7990393 | PMC |
http://dx.doi.org/10.1038/s41589-020-00669-3 | DOI Listing |
Biol Aujourdhui
January 2025
Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France.
Today, weed control in agricultural systems is largely based on the use of synthetic pesticides. However, the use of these compounds is increasingly controversial among farmers and consumers, who point to their harmful properties for human health and the environment. In this context, the development of eco-friendly agricultural approaches and practices is becoming essential, and allelopathy represents a promising solution.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Laboratory of Biological Oxidations, Department of Biochemistry, State University of Maringa, Maringa 87020-900, PR, Brazil.
The cover crop (L.) R.Br.
View Article and Find Full Text PDFChemosphere
January 2025
U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA. Electronic address:
Cyanobacteria harmful algal blooms in lakes are primarily driven by nutrient and temperature conditions, yet the interplay of these abiotic factors with microbial community dynamics during bloom events is complex and challenging to unravel. Despite advances through deep sequencing approaches, the underlying transcriptomic changes occurring within blooming and non-blooming taxa remains an actively expanding area of study. In this work, we examined a spring-summer bloom event in Anderson Lake, WA, which has experienced recurring annual blooms dominated by the filamentous, anatoxin-a producing, diazotroph: Dolichospermum sp.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea.
Invasive weed species exhibit both advantages, such as the potential for allelochemicals in bioherbicide development, and risks, including their threat to crop production. Therefore, this study aims to identify an allelochemical from , an invasive weed species. The dose-dependent effects of shoot and root extracts (SSE, SRE) on the signaling in the forage crop and germination in various weed species (, , , , and ) were evaluated.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia.
Canadian goldenrod L.), an invasive plant in Europe, is known for its allelopathic activity and is rich in bioactive compounds like flavonoids and phenolic acids, with significant pharmacological potential. This study presents the LC-MS phenolic profiles of leaf and flower extracts from , an invasive alien plant in the Istria region (Croatia).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!