Epigenetic dysregulation is a common mechanism shared by molecularly and clinically heterogenous neurodegenerative diseases (NDs). Histone acetylation homeostasis, maintained by the antagonistic activity of histone acetyltransferases (HATs) and histone deacetylases (HDACs), is necessary for appropriate gene expression and neuronal function. Disruption of neural acetylation homeostasis has been implicated in multiple types of NDs including Alzheimer's disease (AD), yet mechanisms underlying alterations remain unclear. We show that like AD, disruption of Tip60 HAT/HDAC2 balance with concomitant epigenetic repression of common Tip60 target neuroplasticity genes occurs early in multiple types of Drosophila ND models such as Parkinson's Disease (PD), Huntington's Disease (HD) and Amyotrophic Lateral Sclerosis (ALS). Repressed neuroplasticity genes show reduced enrichment of Tip60 and epigentic acetylation signatures at all gene loci examined with certain genes showing inappropriate HDAC2 repressor enrichment. Functional neuronal consequences for these disease conditions are reminiscent of human pathology and include locomotion, synapse morphology, and short-term memory deficits. Increasing Tip60 HAT levels specifically in the mushroom body learning and memory center in the Drosophila brain protects against locomotion and short-term memory function deficits in multiple NDs. Together, our results support a model by which Tip60 protects against neurological impairments in different NDs via similar modes of action.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7588445PMC
http://dx.doi.org/10.1038/s41598-020-75035-3DOI Listing

Publication Analysis

Top Keywords

acetylation homeostasis
12
disruption tip60
8
tip60 hat
8
histone acetylation
8
neurodegenerative diseases
8
multiple types
8
neuroplasticity genes
8
short-term memory
8
tip60
5
hat mediated
4

Similar Publications

Metabolism-epigenetic interaction-based bone and dental regeneration: From impacts and mechanisms to treatment potential.

Bone

December 2024

Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Centre for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Centre of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China. Electronic address:

Metabolic pathways exhibit fluctuating activities during bone and dental loss and defects, suggesting a regulated metabolic plasticity. Skeletal remodeling is an energy-demanding process related to altered metabolic activities. These metabolic changes are frequently associated with epigenetic modifications, including variations in the expression or activity of enzymes modified through epigenetic mechanisms, which directly or indirectly impact cellular metabolism.

View Article and Find Full Text PDF

Cardiac diseases remain one of the leading causes of death globally, often linked to ischemic conditions that can affect cellular homeostasis and metabolism, which can lead to the development of cardiovascular dysfunction. Considering the effect of ischemic cardiomyopathy on the global population, it is vital to understand the impact of ischemia on cardiac cells and how ischemic conditions change different cellular functions through post-translational modification of cellular proteins. : To understand the cellular function and fine-tuning during stress, we established an ischemia model using neonatal rat ventricular cardiomyocytes.

View Article and Find Full Text PDF

Effects of Acute Stress on Metabolic Interactions Related to the Tricarboxylic Acid (TCA) Cycle in the Left Hippocampus of Mice.

Metabolites

December 2024

Department of Radiation Convergence Engineering, College of Software and Digital Healthcare Convergence, Yonsei University, 1, Yeonsedae-gil, Heungeop-myeon, Wonju 26493, Republic of Korea.

Background/objectives: The acute stress response affects brain metabolites closely linked to the tricarboxylic acid (TCA) cycle. This response involves time-dependent changes in hormones and neurotransmitters, which contribute to resilience and the ability to adapt to acute stress while maintaining homeostasis. This physiological mechanism of metabolic dynamics, combined with time-series analysis, has prompted the development of new methods to observe the relationship between TCA cycle-related brain metabolites.

View Article and Find Full Text PDF

Protein post-translational modifications play a vital role in various cellular events essential for maintaining cellular physiology and homeostasis. In cancer cells, aberrant post-translational modifications such as glycosylation, acetylation, and phosphorylation on proteins can result in the generation of antigenic peptide variants presented in complex with MHC molecules. These modified peptides add to the class of tumorspecific antigens and offer promising avenues for targeted anti- cancer therapies.

View Article and Find Full Text PDF

GLS1-mediated glutamine metabolism mitigates oxidative stress-induced matrix degradation, ferroptosis, and senescence in nucleus pulposus cells by modulating Fe homeostasis.

Free Radic Biol Med

December 2024

Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510289, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510289, China. Electronic address:

Intervertebral disc degeneration (IDD) is intricately linked to the pathogenesis of low back pain (LBP). The balance of nucleus pulposus (NP) cell and intervertebral disc (IVD) integrity is significantly supported by amino acid metabolism within an avascular milieu. However, the specific metabolic demands during the progression of IDD are not fully understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!