Background: C-type natriuretic peptide (CNP), its endogenous receptor, natriuretic peptide receptor-B (NPR-B), as well as its downstream mediator, cyclic guanosine monophosphate (cGMP) dependent protein kinase II (cGKII), have been shown to play a pivotal role in chondrogenic differentiation and endochondral bone growth. In humans, biallelic variants in encoding NPR-B, cause acromesomelic dysplasia, type Maroteaux, while heterozygous variants in (natriuretic peptide receptor 2) and (natriuretic peptide precursor C), encoding CNP, cause milder phenotypes. In contrast, no variants in cGKII, encoded by the protein kinase cGMP-dependent type II gene (), have been reported in humans to date, although its role in longitudinal growth has been clearly demonstrated in several animal models.
Methods: Exome sequencing was performed in two girls with severe short stature due to acromesomelic limb shortening, brachydactyly, mild to moderate platyspondyly and progressively increasing metaphyseal alterations of the long bones. Functional characterisation was undertaken for the identified variants.
Results: Two homozygous variants, a nonsense and a frameshift, were identified. The mutant transcripts are exposed to nonsense-mediated decay and the truncated mutant cGKII proteins, partially or completely lacking the kinase domain, alter the downstream mitogen activation protein kinase signalling pathway by failing to phosphorylate c-Raf 1 at Ser43 and subsequently reduce ERK1/2 activation in response to fibroblast growth factor 2. They also downregulate and upregulate expression through SOX9.
Conclusion: In conclusion, we have clinically and molecularly characterised a new acromesomelic dysplasia, acromesomelic dysplasia, PRKG2 type (AMDP).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1136/jmedgenet-2020-107177 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!