It is established that cancer cachexia causes limb muscle atrophy and is strongly associated with morbidity and mortality; less is known about how the development of cachexia impacts the diaphragm. The purpose of this study was to investigate cellular signaling mechanisms related to mitochondrial function, reactive oxygen species (ROS) production, and protein synthesis during the development of cancer cachexia. C57BL/J6 mice developed Lewis Lung Carcinoma for either 0 weeks (Control), 1 week, 2 weeks, 3 weeks, or 4 weeks. At designated time points, diaphragms were harvested and analyzed. Mitochondrial respiratory control ratio was ~50% lower in experimental groups, which was significant by 2 weeks of cancer development, with no difference in mitochondrial content markers COXIV or VDAC. Compared to the controls, ROS was 4-fold elevated in 2-week animals but then was not different at later time points. Only one antioxidant protein, GPX3, was altered by cancer development (~70% lower in experimental groups). Protein synthesis, measured by a fractional synthesis rate, appeared to become progressively lower with the cancer duration, but the mean difference was not significant. The development and progression of cancer cachexia induces marked alterations to mitochondrial function and ROS production in the diaphragm and may contribute to increased cachexia-associated morbidity and mortality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7660065PMC
http://dx.doi.org/10.3390/ijms21217841DOI Listing

Publication Analysis

Top Keywords

cancer cachexia
16
mitochondrial function
12
morbidity mortality
8
ros production
8
protein synthesis
8
weeks weeks
8
time points
8
lower experimental
8
experimental groups
8
cancer development
8

Similar Publications

Transcriptomic Profiling Reveals 17β-Estradiol Treatment Represses Ubiquitin-Proteasomal Mediators in Skeletal Muscle of Ovariectomized Mice.

J Cachexia Sarcopenia Muscle

February 2025

Division of Physical Therapy and Rehabilitation Science, Department of Family Medicine and Community Health, University of Minnesota, Minneapolis, Minnesota, USA.

Background: With a decline of 17β-estradiol (E2) at menopause, E2 has been implicated in the accompanied loss of skeletal muscle mass and strength. We aimed at characterizing transcriptomic responses of skeletal muscle to E2 in female mice, testing the hypothesis that genes and pathways related to contraction and maintenance of mass are differentially expressed in ovariectomized mice with and without E2 treatment.

Methods: Soleus and tibialis anterior (TA) muscles from C57BL/6 ovariectomized mice treated with placebo (OVX) or E2 (OVX + E2) for 60 days, or from skeletal muscle-specific ERα knockout (skmERαKO) mice and wild-type littermates (skmERαWT), were used for genome-wide expression profiling, quantitative real-time PCR and immunoblotting.

View Article and Find Full Text PDF

Sarcopenia and cancer cachexia are two life-threatening conditions often misdiagnosed. The skeletal muscle is one of the organs most adversely affected by these conditions, culminating in poor quality of life and premature mortality. In addition, it has been suggested that chemotherapeutic agents exacerbate cancer cachexia, as is the case of doxorubicin.

View Article and Find Full Text PDF

Pulmonary embolism (PE) and obstructive sleep apnea (OSA) remain a major health issue worldwide with potential overlapping pathophysiological mechanisms. PE, the most severe form of venous thromboembolism, is associated with high morbidity and mortality, presenting challenges in management and prevention, especially in high-risk populations. OSA is a prevalent condition characterized by repeated episodes of upper airway closure resulting in intermittent hypoxia and sleep fragmentation.

View Article and Find Full Text PDF

Background: Identifying the underlying mechanisms of immune checkpoint inhibitor resistance in patients with cachexia is a current challenge. Ghrelin is a peptide hormone that plays an important role in the metabolism of patients with cancer cachexia. Despite the importance of ghrelin in cancer cachexia, most previous studies on the subject have not distinguished between the forms of ghrelin.

View Article and Find Full Text PDF

The lipocalin saga: Insights into its role in cancer-associated cachexia.

Biochim Biophys Acta Mol Basis Dis

January 2025

National Forensic Sciences University, Gandhinagar 382007, Gujarat, India. Electronic address:

Cancer-associated cachexia (CAC) is a debilitating condition, observed in patients with advanced stages of cancer. It is marked by ongoing weight loss, weakness, and nutritional impairment. Lower tolerance of chemotherapeutic agents and radiation therapy makes it difficult to treat CAC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!