The huge interest in the health-related properties of foods to improve health has brought about the development of sensitive analytical methods for the characterization of natural products with functional ingredients. Greek olive leaves and drupes constitute a valuable source of biophenols with functional properties. A novel ultra-high-performance liquid chromatography-quadrupole time of flight tandem mass spectrometry (UHPLC-QTOF-MS) analytical method was developed to identify biophenols through target and suspect screening in Greek olive leaves and drupes of the varieties: Koroneiki, Throumbolia, Konservolia, Koutsourelia, Kalamon, Petrolia, Amigdalolia, Megaritiki, Mastoeidis, Agouromanakolia, Agrilia, Adramitiani and Kolovi. The method's performance was evaluated using the target compounds: oleuropein, tyrosol and hydroxytyrosol. The analytes demonstrated satisfactory recovery efficiency for both leaves (85.9-90.5%) and drupes (89.7-92.5%). Limits of detection (LODs) were relatively low over the range 0.038 (oleuropein)-0.046 (hydroxytyrosol) and 0.037 (oleuropein)-0.048 (hydroxytyrosol) for leaves and drupes, respectively For leaves, the precision limit ranged between 4.7 and 5.8% for intra-day and between 5.8 and 6.5% for inter-day experiments, and for drupes, it ranged between 3.8 and 5.2% for intra-day and between 5.1 and 6.2% for inter-day experiments, establishing the good precision of the method. The regression coefficient (r) was above 0.99 in all cases. Furthermore, the preparation of herbal tea from olive leaves is suggested after investigating the optimum infusion time of dried leaves in boiling water. Overall, 10 target and 36 suspect compounds were determined in leaves, while seven targets and thirty-three suspects were identified in drupes, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7660111 | PMC |
http://dx.doi.org/10.3390/molecules25214889 | DOI Listing |
Foods
January 2025
Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece.
The abundant yet underutilized olive leaves, a renewable by-product of olive cultivation, offer untapped potential for producing high-value bioactive compounds, notably oleacein. Existing extraction methods are often inefficient, yielding low quantities of oleacein due to enzymatic degradation of its precursor, oleuropein, during conventional processing and storage. This study aimed to overcome these limitations by exploring a novel methodology based on freeze-drying, to facilitate the in situ enzymatic biotransformation of oleuropein into oleacein directly within the plant matrix.
View Article and Find Full Text PDFFoods
January 2025
Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
Virgin avocado oil (VAO), treasured for its nutritional and sensory properties, is susceptible to oxidation. To improve its oxidative stability, the feasibility of enrichment with antioxidants from avocado or olive-processing by-products via ultrasound-assisted maceration was explored. Dried, milled avocado (AL), olive leaves (OL), or olive pomace (OP) were ultrasound-macerated with laboratory-extracted VAO at 5, 10, and 20% levels.
View Article and Find Full Text PDFMetabolites
January 2025
Natural Products & Food Research and Analysis-Pharmaceutical Technology (NatuRAPT), University of Antwerp, 2610 Wilrijk, Belgium.
Background: Olive leaves are a rich source of polyphenols, predominantly secoiridoids, flavonoids, and simple phenols, which exhibit various biological properties. Extracts prepared from olive leaves are associated with hypoglycemic, hypotensive, diuretic, and antiseptic properties. Upon ingestion, a substantial fraction of these polyphenols reaches the colon where they undergo extensive metabolism by the gut microbiota.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electronic Engineering, Universidad Tecnica Federico Santa Maria, Valparaiso, Chile.
Assessing the health status of vegetation is of vital importance for all stakeholders. Multi-spectral and hyper-spectral imaging systems are tools for evaluating the health of vegetation in laboratory settings, and also hold the potential of assessing vegetation of large portions of land. However, the literature lacks benchmark datasets to test algorithms for predicting plant health status, with most researchers creating tailored datasets.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States.
Oleuropein is a phenolic compound commonly found in cosmetic ingredients including olive leaves and jasmine flowers with various skin-beneficial effects. Here, we evaluated oleuropein's anti-inflammatory and antioxidant activities in human skin cells. In a cell-based inflammasome model with human monocytes (THP-1 cells), oleuropein (12-200 µM) reduced proinflammatory cytokine interleukin (IL)-6 by 38.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!