The construction of prestressed concrete bridges has witnessed a steep increase for the past 50 years worldwide. The constructed bridges exposed to various environmental conditions deteriorate all along their service life. One such degradation is corrosion, which can cause significant damage if it occurs on the main structural components, such as prestressing tendons. In this study, a novel non-destructive evaluation method to incorporate a movable yoke system with denoising algorithm based on kernel principal component analysis is developed and applied to identify the loss of cross-sectional area in corroded external prestressing tendons. The proposed method using denoised output voltage signals obtained from the measuring device appears to be a reliable and precise monitoring system to detect corrosion with less than 3% sectional loss.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7672632 | PMC |
http://dx.doi.org/10.3390/s20215984 | DOI Listing |
Sensors (Basel)
January 2025
Department of Structures for Engineering and Architecture, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy.
The growing importance of state assessments in civil engineering has led to intensive research into the development of damage identification methods based on vibrations. Natural frequencies and modal shapes have garnered great interest because modal parameters are invariant of structure. Moreover, thanks to the global nature of modal parameters, their variations are not limited to the location of the damage.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Civil, Environmental, and Construction Engineering, Texas Tech University, USA.
This study presents the design and experimental evaluation of advanced corrosion protection coatings for application on prestressing strands which are the core constituents of prestressed concrete structures such as bridges. Variety of self-heal coatings embodying corrective and protective phenomena in response to the degrading effects of corrosion have been designed and tested in simulated aggressive weathering conditions. Standard 7-wire prestressing strands coated with self-heal epoxy, self-heal toughened epoxy and hybrid epoxy coating systems were subjected to salt fog spray up to a duration of 2500 h, and 3M CalCl, 3M NaOH, saturated Ca(OH) solutions and distilled water up to 45 days duration.
View Article and Find Full Text PDFSci Rep
October 2024
Department of Civil Engineering, School of Engineering, University of Birmingham, Birmingham, B15 2TT, UK.
Bridges are vital assets of transport infrastructure, systems, and communities. Damage characterization is critical in ensuring safety and planning adaptation measures. Nondestructive methods offer an efficient means towards assessing the condition of bridges, without causing harm or disruption to transport services, and these can deploy measurable evidence of bridge deterioration, e.
View Article and Find Full Text PDFMaterials (Basel)
September 2024
College of Civil Engineering, Tongji University, Shanghai 200092, China.
This study builds a refined finite element (FE) model to research the flexural behavior of a reinforced beam with prestressed CFRP tendons. The precision of the FE model is validated through a comparison with the experimental outcomes. The numerical findings align well with the experimental outcomes, encompassing the failure mode, load-deflection curve, load-strain curves of concrete, steel reinforcements and CFRP tendons.
View Article and Find Full Text PDFMaterials (Basel)
August 2024
Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, 30-059 Cracow, Poland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!