Capacitive deionization (CDI) based on ion electrosorption has recently emerged as a promising desalination technology due to its low energy consumption and environmental friendliness compared to conventional purification technologies. Carbon-based materials, including activated carbon (AC), carbon aerogel, carbon cloth, and carbon fiber, have been mostly used in CDI electrodes due their high surface area, electrochemical stability, and abundance. However, the low electrical conductivity and non-regular pore shape and size distribution of carbon-based electrodes limits the maximization of the salt removal performance of a CDI desalination system using such electrodes. Metal-organic frameworks (MOFs) are novel porous materials with periodic three-dimensional structures consisting of metal center and organic ligands. MOFs have received substantial attention due to their high surface area, adjustable pore size, periodical unsaturated pores of metal center, and high thermal and chemical stabilities. In this study, we have synthesized ZIF-67 using CNTs as a substrate to fully utilize the unique advantages of both MOF and nanocarbon materials. Such synthesis of ZIF-67 carbon nanostructures was confirmed by TEM, SEM, and XRD. The results showed that the 3D-connected ZIF-67 nanostructures bridging by CNTs were successfully prepared. We applied this nanostructured ZIF-67@CNT to CDI electrodes for desalination. We found that the salt removal performance was significantly enhanced by 88% for 30% ZIF-67@CNTs-included electrodes as compared with pristine AC electrodes. This increase in salt removal behavior was analyzed by electrochemical analysis such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements, and the results indicate reduced electrical impedance and enhanced electrode capacitance in the presence of ZIF-67@CNTs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7690409 | PMC |
http://dx.doi.org/10.3390/nano10112091 | DOI Listing |
J Bone Joint Surg Am
January 2025
Adult Reconstruction and Joint Replacement, Hospital for Special Surgery, New York, NY.
Background: Antiseptic solutions are commonly utilized during total joint arthroplasty (TJA) to prevent and treat periprosthetic joint infection (PJI). The purpose of this study was to investigate which antiseptic solution is most effective against methicillin-sensitive Staphylococcus aureus (MSSA) and Escherichia coli biofilms established in vitro on orthopaedic surfaces commonly utilized in total knee arthroplasty: cobalt-chromium (CC), oxidized zirconium (OxZr), and polymethylmethacrylate (PMMA).
Methods: MSSA and E.
Adv Sci (Weinh)
January 2025
Department of Chemistry, University of North Texas1508 W Mulberry St, Denton, TX, 76201, USA.
Efficient removal of TcO from radioactive effluents while recovering drinking water remains a challenge. Herein, an excellent ReO (a nonradioactive surrogate of TcO ) scavenger is presented through covalently bonding imidazolium poly(ionic liquids) polymers with an ionic porous aromatic framework (iPAF), namely iPAF-P67, following an adsorption-site density-addition strategy. It shows rapid sorption kinetics, high uptake capacity, and exceptional selectivity toward ReO .
View Article and Find Full Text PDFJ Control Release
January 2025
State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China.
Selenium deficiency associated with a high risk of many diseases remains a global challenge. Owing to the narrow margin between "nutrition-toxicity" doses of selenium, it is imperative to achieve accurate selenium supplement. Nano‑selenium (SeNPs) is a novel form of selenium supplement with low toxicity, but it could be trapped and removed by intestinal mucus, thus limiting its oral delivery.
View Article and Find Full Text PDFEnviron Sci Process Impacts
January 2025
Department of Environmental Science, Stockholm University, Sweden.
In surface waters, photodegradation is a major abiotic removal pathway of the neurotoxin monomethylmercury (MMHg), acting as a key control on the amounts of MMHg available for biological uptake. Different environmental factors can alter the rate of MMHg photodegradation. However, our understanding of how MMHg photodegradation pathways in complex matrixes along the land-to-ocean aquatic continuum respond to changes in salinity, dissolved organic carbon (DOC) concentration and dissolved organic matter (DOM) composition is incomplete.
View Article and Find Full Text PDFJ Environ Qual
January 2025
Institute for the Environment, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
Population growth in coastal areas increases nitrogen inputs to receiving waterways and degrades water quality. Wetland habitats, including floodplain forests and marshes, can be effective nitrogen sinks; however, little is known about the effects of chronic point source nutrient enrichment on sediment nitrogen removal in tidally influenced coastal systems. This study characterizes enrichment patterns in two tidal systems affected by wastewater treatment facility (WWTF) effluent and assesses the impact on habitat nitrogen removal via denitrification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!