A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Gel-Based Nanocarrier for Intravesical Chemotherapy Delivery: In Vitro and In Vivo Study. | LitMetric

Gel-Based Nanocarrier for Intravesical Chemotherapy Delivery: In Vitro and In Vivo Study.

Pharmaceuticals (Basel)

School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.

Published: October 2020

Intravesical administration of chemotherapeutic agents can enhance drug accumulation in tumors and reduce systemic side effects. Nanocarriers were developed for intravesical administration and exploit the permeation enhancement effect. In vitro permeation evaluation, the drug transdermal amount and accumulation amounts in the tissue of gemcitabine-loaded nanocarriers through biological membrane significantly increased about 14.8~33.0-fold and 1.5~14.1-fold respectively, when compared to a control group of 1% gemcitabine saline solution. In in vivo intravesical administration, the drug accumulation amount in bladder tissue of nanocarrier of 75.2 ± 5.4 μg was revealed as being comparably higher than that of the control group of 44.8 ± 6.4 μg. In confocal laser scanning microscopy imagery, the penetration depth of fluorescent dyes-rhodamine was increased from 80 μm up to 120 μm when a nanocarrier was used. This result implies that the nanocarrier is a promising drug delivery agent for intravesical administration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7690443PMC
http://dx.doi.org/10.3390/ph13110329DOI Listing

Publication Analysis

Top Keywords

intravesical administration
16
drug accumulation
8
control group
8
intravesical
5
gel-based nanocarrier
4
nanocarrier intravesical
4
intravesical chemotherapy
4
chemotherapy delivery
4
delivery vitro
4
vitro vivo
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!