The European Union's 2030 climate and energy policy and the 2030 Agenda for Sustainable Development underline the commitment to mitigate climate change and reduce its impacts by supporting sustainable use of resources. This commitment has become stricter in light of the ambitious climate neutrality target set by the European Green Deal for 2050. Water, Energy and Food are the key variables of the "Nexus Thinking" which face the sustainability challenge with a multi-sectoral approach. The aim of the paper is to show the methodological path toward the implementation of an integrated modeling platform based on the Nexus approach and consolidated energy system analysis methods to represent the agri-food system in a circular economy perspective (from the use of water, energy, biomass, and land to food production). The final aim is to support decision-making connected to climate change mitigation. The IEA-The Integrated MARKAL-EFOM System (TIMES) model generator was used to build up the Basilicata Water, Energy and Food model (TIMES-WEF model), which allows users a comprehensive evaluation of the impacts of climate change on the Basilicata agri-food system in terms of land use, yields and water availability and a critical comparison of these indicators in different scenarios. The paper focuses on the construction of the model's Reference Energy and Material System of the TIMES model, which integrates water and agricultural commodities into the energy framework, and on the results obtained through the calibration of the model β version to statistical data on agricultural activities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7659488PMC
http://dx.doi.org/10.3390/ijerph17217703DOI Listing

Publication Analysis

Top Keywords

climate change
16
water energy
12
energy food
8
agri-food system
8
system times
8
times model
8
energy
7
climate
6
water
5
system
5

Similar Publications

Molecular Mechanism Behind the Capture of Fluorinated Gases by Metal-Organic Frameworks.

Nanomicro Lett

January 2025

College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Rd 1239, Shanghai, 200092, People's Republic of China.

Fluorinated gases (F-gases) play a vital role in the chemical industry and in the fields of air conditioning, refrigeration, health care, and organic synthesis. However, the direct emission of waste gases containing F-gases into the atmosphere contributes to greenhouse effects and generates toxic substances. Developing porous materials for the energy-efficient capture, separation, and recovery of F-gases is highly desired.

View Article and Find Full Text PDF

The lesser spiny eel, Macrognathus aculeatus (Bloch, 1786), holds substantial economic importance as a food fish in South Asia, due to its exceptional nutritional value. This study was conducted to investigate the reproductive ecology of M. aculeatus within the Gajner beel wetland ecosystem in northwestern Bangladesh, with a specific focus on size at sexual maturity, spawning season, and fecundity in relation to eco-climatic variables.

View Article and Find Full Text PDF

Climate change has become an emerging topic, leading to widespread damage. However, when considering climate, attention is drawn to various scales, and urban microclimate has emerged as a trending subject due to its direct relevance to human living environments. Among the microclimatic factors, temperature and precipitation are utilized in order to identify trends.

View Article and Find Full Text PDF

Proteomic Analysis Is Needed to Understand the Vulnerability of Sea Anemones to Climate Change.

J Proteome Res

January 2025

Department of Hydrobiology, Division of Biological and Health Sciences, Ecotoxicology Laboratory, Universidad Autónoma Metropolitana, Iztapalapa Unit, Mexico City C. P. 09340, Mexico.

Sea anemones play a crucial role in marine ecosystems. Recent studies have highlighted their physiological and ecological responses to thermal stress. Therefore, our objective was to perform a proteomic analysis of sea anemones in the Gulf of Mexico, subjected to thermal stress, to understand whether these organisms activate specific processes to resist increased temperature.

View Article and Find Full Text PDF

Thermodynamic regulation of carbon dioxide capture by functionalized ionic liquids.

Chem Soc Rev

January 2025

Department of Chemistry, Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310027, China.

Carbon dioxide capture has attracted worldwide attention because CO emissions cause global warming and exacerbate climate change. Ionic liquids (ILs) have good application prospects in carbon capture due to their excellent properties, which provide a new chance to develop efficient and reversible carbon capture systems. This paper reviews the recent progress in CO chemical absorption by ILs, such as N-site, O-site, C-site, and multi-site functionalized ILs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!