NaCl-altered oxygen flux profiles and H+-ATPase activity in roots of two contrasting poplar species.

Tree Physiol

Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, People's Republic of China.

Published: May 2021

Maintaining mitochondrial respiration is crucial for proving ATP for H+ pumps to continuously exclude Na+ under salt stress. NaCl-altered O2 uptake, mitochondrial respiration and the relevance to H+-ATPase activity were investigated in two contrasting poplar species, Populus euphratica (salt-tolerant) and Populus popularis 35-44 (salt-sensitive). Compared with P. popularis, P. euphratica roots exhibited a greater capacity to extrude Na+ under NaCl stress (150 mM). The cytochemical analysis with Pb(NO3)2 staining revealed that P. euphratica root cells retained higher H+ hydrolysis activity than the salt-sensitive poplar during a long term (LT) of increasing salt stress (50-200 mM NaCl, 4 weeks). Long-sustained activation of proton pumps requires long-lasting supply of energy (adenosine triphosphate, ATP), which is delivered by aerobic respiration. Taking advantage of the vibrating-electrodes technology combined with the use of membrane-tipped, polarographic oxygen microelectrodes, the species, spatial and temporal differences in root O2 uptake were characterized under conditions of salt stress. Oxygen uptake upon NaCl shock (150 mM) was less declined in P. euphratica than in P. popularis, although the salt-induced transient kinetics were distinct from the drastic drop of O2 caused by hyperosmotic shock (255 mM mannitol). Short-term (ST) treatment (150 mM NaCl, 24 h) stimulated O2 influx in P. euphratica roots, and LT-treated P. euphratica displayed an increased O2 influx along the root axis, whereas O2 influx declined with increasing salinity in P. popularis roots. The spatial localization of O2 influxes revealed that the apical zone was more susceptible than the elongation region upon high NaCl (150, 200 mM) during ST and LT stress. Pharmacological experiments showed that the Na+ extrusion and H+-ATPase activity in salinized roots were correspondingly suppressed when O2 uptake was inhibited by a mitochondrial respiration inhibitor, NaN3. Therefore, we conclude that the stable mitochondrial respiration energized H+-ATPase of P. euphratica root cells for maintaining Na+ homeostasis under salt environments.

Download full-text PDF

Source
http://dx.doi.org/10.1093/treephys/tpaa142DOI Listing

Publication Analysis

Top Keywords

mitochondrial respiration
16
h+-atpase activity
12
salt stress
12
contrasting poplar
8
poplar species
8
euphratica roots
8
euphratica root
8
root cells
8
euphratica
7
roots
5

Similar Publications

CAMKIIδ Reinforces Lipid Metabolism and Promotes the Development of B Cell Lymphoma.

Adv Sci (Weinh)

January 2025

Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.

The most prevalent types of lymphomas are B cell lymphomas (BCL). Newer therapies for BCL have improved the prognosis for many patients. However, approximately 30% with aggressive BCL either remain refractory or ultimately relapse.

View Article and Find Full Text PDF

Background: HA14-1 is a small-molecule, stable B-cell lymphoma 2 (Bcl-2) antagonist that promotes apoptosis in malignant cells through an incompletely-defined mechanism of action. Bcl-2 and related anti-apoptotic proteins, such as B-cell lymphoma-extra-large [Bcl-XL]), are predominantly localized to the outer mitochondrial membrane, where they regulate cell death pathways. However, the notably short half-life of HA14-1 limits its potential therapeutic application.

View Article and Find Full Text PDF

Introduction: Doxorubicin is a chemotherapeutic drug used to treat various cancers. Exercise training (ET) can attenuate some cardiotoxic effects of doxorubicin (DOX) in tumor-free animals. However, the ET effects on cardiac function and glucose metabolism in DOX-treated breast cancer models remain unclear.

View Article and Find Full Text PDF

Background And Objective: Mitochondria are crucial to the function of renal tubular cells, and their dynamic perturbation in many aspects is an important mechanism of diabetic kidney disease (DKD). Single-nucleus RNA sequencing (snRNA-seq) technology is a high-throughput sequencing analysis technique for RNA at the level of a single cell nucleus. Here, our DKD mouse kidney single-cell RNA sequencing conveys a more comprehensive mitochondrial profile, which helps us further understand the therapeutic response of this unique organelle family to drugs.

View Article and Find Full Text PDF

During infection, dengue virus (DENV) and Zika virus (ZIKV), two (ortho)flaviviruses of public health concern worldwide, induce alterations of mitochondria morphology to favor viral replication, suggesting a viral co-opting of mitochondria functions. Here, we performed an extensive transmission electron microscopy-based quantitative analysis to demonstrate that both DENV and ZIKV alter endoplasmic reticulum-mitochondria contact sites (ERMC). This correlated at the molecular level with an impairment of ERMC tethering protein complexes located at the surface of both organelles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!