A range of new technologies have the potential to help people, whether traditionally considered hearing impaired or not. These technologies include more sophisticated personal sound amplification products, as well as real-time speech enhancement and speech recognition. They can improve user's communication abilities, but these new approaches require new ways to describe their success and allow engineers to optimize their properties. Speech recognition systems are often optimized using the word-error rate, but when the results are presented in real time, user interface issues become a lot more important than conventional measures of auditory performance. For example, there is a tradeoff between minimizing recognition time (latency) by quickly displaying results versus disturbing the user's cognitive flow by rewriting the results on the screen when the recognizer later needs to change its decisions. This article describes current, new, and future directions for helping billions of people with their hearing. These new technologies bring auditory assistance to new users, especially to those in areas of the world without access to professional medical expertise. In the short term, audio enhancement technologies in inexpensive mobile forms, devices that are quickly becoming necessary to navigate all aspects of our lives, can bring better audio signals to many people. Alternatively, current speech recognition technology may obviate the need for audio amplification or enhancement at all and could be useful for listeners with normal hearing or with hearing loss. With new and dramatically better technology based on deep neural networks, speech enhancement improves the signal to noise ratio, and audio classifiers can recognize sounds in the user's environment. Both use deep neural networks to improve a user's experiences. Longer term, auditory attention decoding is expected to allow our devices to understand where a user is directing their attention and thus allow our devices to respond better to their needs. In all these cases, the technologies turn the hearing assistance problem on its head, and thus require new ways to measure their performance.

Download full-text PDF

Source
http://dx.doi.org/10.1097/AUD.0000000000000955DOI Listing

Publication Analysis

Top Keywords

speech recognition
12
speech enhancement
8
improve user's
8
require ways
8
deep neural
8
neural networks
8
allow devices
8
technologies
5
hearing
5
speech
5

Similar Publications

This article presents a creative biography of Sergey Selivanovich Golovin, the prominent Russian ophthalmologist of the first quarter of the 20th century. The work is based on archival research and analysis of published materials, and characterizes the career of S.S.

View Article and Find Full Text PDF

A non-local dual-stream fusion network for laryngoscope recognition.

Am J Otolaryngol

December 2024

Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, Tianjin 300192, China; Institute of Otolaryngology of Tianjin, Tianjin, China; Key Laboratory of Auditory Speech and Balance Medicine, Tianjin, China; Key Clinical Discipline of Tianjin (Otolaryngology), Tianjin, China; Otolaryngology Clinical Quality Control Centre, Tianjin, China.

Purpose: To use deep learning technology to design and implement a model that can automatically classify laryngoscope images and assist doctors in diagnosing laryngeal diseases.

Materials And Methods: The experiment was based on 3057 images (normal, glottic cancer, granuloma, Reinke's Edema, vocal cord cyst, leukoplakia, nodules and polyps) from the dataset Laryngoscope8. A classification model based on deep neural networks was developed and tested.

View Article and Find Full Text PDF

Unlabelled: Central auditory disorders (CSD) - this is a violation of the processing of sound stimuli, including speech, above the cochlear nuclei of the brain stem, which is mainly manifested by difficulties in speech recognition, especially in noisy environments. Children with this pathology are more likely to have behavioral problems, impaired auditory, linguistic and cognitive development, and especially difficulties with learning at school.

Objective: To analyze the literature data on the epidemiology of central auditory disorders in school-age children.

View Article and Find Full Text PDF

How Does Deep Neural Network-Based Noise Reduction in Hearing Aids Impact Cochlear Implant Candidacy?

Audiol Res

December 2024

Division of Audiology, Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, MN 55902, USA.

Background/objectives: Adult hearing-impaired patients qualifying for cochlear implants typically exhibit less than 60% sentence recognition under the best hearing aid conditions, either in quiet or noisy environments, with speech and noise presented through a single speaker. This study examines the influence of deep neural network-based (DNN-based) noise reduction on cochlear implant evaluation.

Methods: Speech perception was assessed using AzBio sentences in both quiet and noisy conditions (multi-talker babble) at 5 and 10 dB signal-to-noise ratios (SNRs) through one loudspeaker.

View Article and Find Full Text PDF

: Hearing loss is a highly prevalent condition in the world population that determines emotional, social, and economic costs. In recent years, it has been definitely recognized that the lack of physiological binaural hearing causes alterations in the localization of sounds and reduced speech recognition in noise and reverberation. This study aims to explore the psycho-social profile of adult workers affected by single-sided deafness (SSD), without other major medical conditions and otological symptoms, through comparison to subjects with normal hearing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!