Many research teams perform numerous genetic, transcriptomic, proteomic and other types of omic experiments to understand molecular, cellular and physiological mechanisms of disease and health. Often (but not always), the results of these experiments are deposited in publicly available repository databases. These data records often include phenotypic characteristics following genetic and environmental perturbations, with the aim of discovering underlying molecular mechanisms leading to the phenotypic responses. A constrained set of phenotypic characteristics is usually recorded and these are mostly hypothesis driven of possible to record within financial or practical constraints. We present a novel proof-of-principal computational approach for combining publicly available gene-expression data from control/mutant animal experiments that exhibit a particular phenotype, and we use this approach to predict unobserved phenotypic characteristics in new experiments (data derived from EBI's ArrayExpress and ExpressionAtlas respectively). We utilised available microarray gene-expression data for two phenotypes (starvation-sensitive and sterile) in Drosophila. The data were combined using a linear-mixed effects model with the inclusion of consecutive principal components to account for variability between experiments in conjunction with Gene Ontology enrichment analysis. We present how available data can be ranked in accordance to a phenotypic likelihood of exhibiting these two phenotypes using random forest. The results from our study show that it is possible to integrate seemingly different gene-expression microarray data and predict a potential phenotypic manifestation with a relatively high degree of confidence (>80% AUC). This provides thus far unexplored opportunities for inferring unknown and unbiased phenotypic characteristics from already performed experiments, in order to identify studies for future analyses. Molecular mechanisms associated with gene and environment perturbations are intrinsically linked and give rise to a variety of phenotypic manifestations. Therefore, unravelling the phenotypic spectrum can help to gain insights into disease mechanisms associated with gene and environmental perturbations. Our approach uses public data that are set to increase in volume, thus providing value for money.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7588067 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0240824 | PLOS |
Vestn Oftalmol
December 2024
Krasnov Research Institute of Eye Diseases, Moscow, Russia.
Unlabelled: Excessive production of extracellular matrix is a key component in the pathogenesis of Salzmann's nodular degeneration (SND). studies of drugs that suppress excessive fibroblast activity may become crucial in developing pathogenetically oriented treatments for SND.
Purpose: This study evaluates the antifibrotic properties of pirfenidone and cyclosporine A (CsA) on cell cultures obtained from patients with SND.
Sci Rep
December 2024
Department of Anthropology, University of South Florida, 4202 E. Fowler Ave. SOC107, Tampa, FL, 33620, USA.
Milk anti-inflammatory compounds are ubiquitous in milk but vary greatly within and between populations. The causes of this variation and how this variation impacts infant phenotype is not well-characterized. The goal of this study was to explain how maternal characteristics across two disparate populations impact the levels of TGF-β2 and IL-1ra in human milk.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, 712100, China; Key Laboratory of Wheat Biology and Genetic Improvement on Northwestern China, Ministry of Agriculture and Rural Affairs, Xianyang, 712100, China. Electronic address:
Photosynthesis drives crop growth and production, and strongly affects grain yields; therefore, it is an ideal trait for wheat drought resistance breeding. However, studies of the negative effects of drought stress on wheat photosynthesis rates have lacked accurate evaluation methods, as well as high-throughput techniques. We investigated photosynthetic capacity under drought stress in wheat varieties with varying degrees of drought stress resistance using hyperspectral and chlorophyll fluorescence (ChlF) imaging data.
View Article and Find Full Text PDFEBioMedicine
December 2024
CeMM Research Centre for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Centre for Physiology and Pharmacology, Medical University of Vienna; Vienna, Austria. Electronic address:
Background: High content imaging-based functional precision medicine approaches have been developed and successfully applied in the field of haemato-oncology. For rheumatoid arthritis (RA), treatment selection is still based on a trial-and-error principle, and biomarkers for patient stratification and drug response prediction are needed.
Methods: A high content, high throughput microscopy-based phenotyping pipeline for peripheral blood mononuclear cells (PBMCs) was developed, allowing for the quantification of cell type frequencies, cell type specific morphology and intercellular interactions from patients with RA (n = 65) and healthy controls (HC, n = 33).
Phytomedicine
December 2024
Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, PR China. Electronic address:
Background: Tetramethylpyrazine (TMP), a key bioactive constituent derived from Ligusticum wallichii Franchat, has demonstrated efficacy in mitigating multidrug resistance (MDR) in human breast cancer (BC) cells. However, the precise mechanisms underlying its action remain poorly understood.
Purpose: Cancer stem cells (CSCs) are widely recognized as the primary contributors to MDR.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!