In dual or multiwavelength interferometry, the traditional equivalent wavelength method is widely used for phase recovery to enlarge the unambiguous measurement range (UMR). In fact, however, this method ignores information of size and sign (positive or negative) of single wavelength wrapped phases, and the extension of the UMR is not sufficient. For the reflective measurement, the largest UMR of the dual or multiwavelength interferometry is half of the least-common multiple (LCM) of single wavelengths, called the LCM effective wavelength, which is often several times the equivalent wavelength. But why do we often use the equivalent wavelength and seldom use the larger UMR in practice? Existing research reveals that the actual UMR is related to the measurement error of single-wavelength-wrapped phases, and half of the LCM effective wavelength is only the theoretical value. But how do errors affect the UMR? We think the quantitative analysis and description are lacking. In this paper, we continue to study this problem, analyze it in a graphical method, and give quantitative descriptions. The simulation experiments are carried out and verify our analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.401876 | DOI Listing |
J Hazard Mater
January 2025
Monash Lung, Sleep, Allergy and Immunology, Monash Health, Melbourne, VIC, Australia; School of Clinical Sciences, Monash University, Melbourne, VIC, Australia; Monash Partners - Epworth, Melbourne, VIC, Australia.
Mitigation measures against infectious aerosols are desperately needed. We aimed to: 1) compare germicidal ultraviolet radiation (GUV) at 254 nm (254-GUV) and 222 nm (222-GUV) with portable high efficiency particulate air (HEPA) filters to inactivate/remove airborne bacteriophage ϕX174, 2) measure the effect of air mixing on the effectiveness of 254-GUV, and 3) determine the relative susceptibility of ϕX174, SARS-CoV-2, and Influenza A(H3N2) to GUV (254 nm, 222 nm). A nebulizer generated ϕX174 laden aerosols in an occupied clinical room (sealed-low flow).
View Article and Find Full Text PDFMethodsX
June 2025
Observatory of Drug-Herb Interactions, Faculty of Pharmacy, University of Coimbra, Health Science Campus, Azinhaga Santa Comba, Coimbra, Portugal.
In this study, a straightforward spectrophotometric method was developed for quantifying the total content of chalcones in a sample. The method exhibits linearity, accuracy, precision, repeatability, and enables the estimation of total chalcone content in trans-chalcone equivalents for a sample diluted in carbon tetrachloride and added to antimony pentachloride. The analytical wavelength was determined to be 390 nm.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin, 300350, China.
A stacked metamaterial MEMS (meta-MEMS) chip is proposed, which can perfectly absorb electromagnetic waves, convert them into mechanical energy, drive movement of the optical micro-reflectors array, and detect millimeter waves. It is equivalent to using visible light to image a millimeter wave. The meta-MEMS adopts the design of upper and lower chip separation and then stacking to achieve the "dielectric-resonant-air-ground" structure, reduce the thickness of the metamaterial and MEMS structures, and improve the performance of millimeter wave imaging.
View Article and Find Full Text PDFAn intelligent controlled spatiotemporal mode-locked (STML) fiber laser based on a photonic lantern (PL) is proposed and experimentally demonstrated. A pair of in-house developed PLs is spliced into the cavity in a back-to-back structure. This PL-based structure functions as a mode multiplexer/demultiplexer to generate higher-order spatial modes.
View Article and Find Full Text PDFRSC Adv
January 2025
Institute of Atomic and Molecular Sciences, Academia Sinica Taipei 106 Taiwan
Extreme ultraviolet (EUV) lithography is a cutting-edge technology in contemporary semiconductor chip manufacturing. Monitoring the EUV beam profiles is critical to ensuring consistent quality and precision in the manufacturing process. This study uncovers the practical use of fluorescent nanodiamonds (FNDs) coated on optical image sensors for profiling EUV and soft X-ray (SXR) radiation beams.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!