A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting the refractive index of amorphous materials using the Bruggeman effective medium approximation. | LitMetric

Previous studies have shown that the Lorentz-Lorenz relationship, or molar refractivity/specific refractivity effective medium approximation, enables a reasonable prediction of the refractive index of amorphous water ice, given the refractive index of crystalline water ice. In the current study, we show that the Bruggeman effective medium approximation provides an even closer match to measurements of the refractive index of several amorphous materials, given the refractive index of their crystalline phase. We show that the Bruggeman effective medium approximation provides a good match to measurements of the refractive index of amorphous ice as well. Thus, assuming that the volume fraction of the scattering centers is a constant for a given amorphous material (with respect to a given range of wavelengths) seems to be a more robust assumption than assuming that the molar mass and molar refractivity or specific refractivity are preserved in going from the crystalline state to the amorphous state of the same material. Our results have implications for astrophysics applications, as well as for the optics of non-crystalline materials in general.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.402103DOI Listing

Publication Analysis

Top Keywords

refractive amorphous
16
effective medium
16
medium approximation
16
bruggeman effective
12
amorphous materials
8
water ice
8
refractive crystalline
8
match measurements
8
measurements refractive
8
amorphous
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!