Semiconductivity Transition in Silicon Nanowires by Hole Transport Layer.

Nano Lett

Department of Solar Energy and Environmental Physics, Swiss Institute for Dryland Environmental and Energy Research, J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshset Ben-Gurion, Building 26, Beer-Sheva 8499000, Israel.

Published: November 2020

The surface of nanowires is a source of interest mainly for electrical prospects. Thus, different surface chemical treatments were carried out to develop recipes to control the surface effect. In this work, we succeed in shifting and tuning the semiconductivity of a Si nanowire-based device from n- to p-type. This was accomplished by generating a hole transport layer at the surface by using an electrochemical reaction-based nonequilibrium position to enhance the impact of the surface charge transfer. This was completed by applying different annealing pulses at low temperature (below 400 °C) to reserve the hydrogen bonds at the surface. After each annealing pulse, the surface was characterized by XPS, Kelvin probe measurements, and conductivity measured by FET based on a single Si NW. The mechanism and conclusion were supported experimentally and theoretically. To this end, this strategy has been demonstrated as an essential tool which could pave a new road for regulating semiconductivity and for other low-dimensional nanomaterials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.0c03543DOI Listing

Publication Analysis

Top Keywords

hole transport
8
transport layer
8
layer surface
8
surface
7
semiconductivity transition
4
transition silicon
4
silicon nanowires
4
nanowires hole
4
surface nanowires
4
nanowires source
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!