The thalamus engages in sensation, action, and cognition, but the structure underlying these functions is poorly understood. Thalamic innervation of associative cortex targets several interneuron types, modulating dynamics and influencing plasticity. Is this structure-function relationship distinct from that of sensory thalamocortical systems? Here, we systematically compared function and structure across a sensory and an associative thalamocortical loop in the mouse. Enhancing excitability of mediodorsal thalamus, an associative structure, resulted in prefrontal activity dominated by inhibition. Equivalent enhancement of medial geniculate excitability robustly drove auditory cortical excitation. Structurally, geniculate axons innervated excitatory cortical targets in a preferential manner and with larger synaptic terminals, providing a putative explanation for functional divergence. The two thalamic circuits also had distinct input patterns, with mediodorsal thalamus receiving innervation from a diverse set of cortical areas. Altogether, our findings contribute to the emerging view of functional diversity across thalamic microcircuits and its structural basis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7644223PMC
http://dx.doi.org/10.7554/eLife.62554DOI Listing

Publication Analysis

Top Keywords

sensory associative
8
associative thalamocortical
8
mediodorsal thalamus
8
variation connectivity
4
connectivity exemplar
4
exemplar sensory
4
associative
4
thalamocortical loops
4
loops mouse
4
mouse thalamus
4

Similar Publications

Uncovering Psychedelics: From Neural Circuits to Therapeutic Applications.

Pharmaceuticals (Basel)

January 2025

Department of Translational Research and New Surgical and Medical Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy.

Psychedelics, historically celebrated for their cultural and spiritual significance, have emerged as potential breakthrough therapeutic agents due to their profound effects on consciousness, emotional processing, mood, and neural plasticity. This review explores the mechanisms underlying psychedelics' effects, focusing on their ability to modulate brain connectivity and neural circuit activity, including the default mode network (DMN), cortico-striatal thalamo-cortical (CSTC) loops, and the relaxed beliefs under psychedelics (REBUS) model. Advanced neuroimaging techniques reveal psychedelics' capacity to enhance functional connectivity between sensory cerebral areas while reducing the connections between associative brain areas, decreasing the rigidity and rendering the brain more plastic and susceptible to external changings, offering insights into their therapeutic outcome.

View Article and Find Full Text PDF

The properties, applications, and in vitro bioactivities of turmeric, turmeric essential oil (TEO), and turmeric essential oil by-products (TEO-BP) were evaluated using sensory analysis, gas chromatography-mass spectrometry (GC-MS), gas chromatography-ion mobility spectrometry (GC-IMS), and electronic nose techniques. A total of 62 and 66 volatile organic compounds (VOCs), primarily terpenoids and sesquiterpenoids, were identified by GC-MS and GC-IMS, respectively. Distillation temperature, particularly at 90 °C, significantly influenced the color and organoleptic properties of TEO, with variations in VOC profiles driving these differences.

View Article and Find Full Text PDF

Audiovisual associative memory and audiovisual integration involve common behavioral processing components and significantly overlap in their neural mechanisms. This suggests that training on audiovisual associative memory may have the potential to improve audiovisual integration. The current study tested this hypothesis by applying a 2 (group: audiovisual training group, unimodal control group) * 2 (time: pretest, posttest) design.

View Article and Find Full Text PDF

The brain's activity fluctuations have different temporal scales across the brain regions, with associative regions displaying slower timescales than sensory areas. This so-called hierarchy of timescales has been shown to correlate with both structural brain connectivity and intrinsic regional properties. Here, using publicly available human resting-state fMRI and dMRI data it was found that, while more structurally connected brain regions presented activity fluctuations with longer timescales, their activity fluctuations presented lower variance.

View Article and Find Full Text PDF

Caenorhabditis Elegans as a Model for Environmental Epigenetics.

Curr Environ Health Rep

January 2025

Institute for Society and Genetics, University of California, Boyer Hall, Room 332, 611 Charles E Young Dr E., UCLA, Los Angeles, CA, 90095, USA.

Purpose Of Review: The burgeoning field of environmental epigenetics has revealed the malleability of the epigenome and uncovered numerous instances of its sensitivity to environmental influences; however, pinpointing specific mechanisms that tie together environmental triggers, epigenetic pathways, and organismal responses has proven difficult. This article describes how Caenorhabditis elegans can fill this gap, serving as a useful model for the discovery of molecular epigenetic mechanisms that are conserved in humans.

Recent Findings: Recent results show that environmental stressors such as methylmercury, arsenite, starvation, heat, bacterial infection, and mitochondrial inhibitors can all have profound effects on the epigenome, with some insults showing epigenetic and organismal effects for multiple generations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!