Effects of Irradiation Parameters and Position on Photobiomodulation Therapy for Spinal Cord Injury Rat Phantom Model: A Dosimetry Simulation Study.

Photobiomodul Photomed Laser Surg

Biomedical Engineering Unit, Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait.

Published: November 2020

To optimize photobiomodulation therapy (PBMT) for spinal cord injury (SCI) by studying the effect(s) of irradiation parameters and position of PBMT on injury site using Monte Carlo simulation and a three-dimensional voxelated SCI rat phantom model. Several studies used a range of irradiation parameters and surface irradiances to calculate the fluence delivered to the SCI site. However, most have ignored factors such as the optical properties of tissues, irradiation parameters, and position. Therefore, although such studies present a broad range of treatment outcomes, a comparison of the treatment efficacy concerning the applied fluence using these studies presents certain challenges In this study, an 810 nm top-hat beam was simulated for 5 numerical apertures (NAs; 0.0, 0.2, 0.4, 0.6, and 0.8), 10 beam radii (0.001, 0.01, 0.1, 0.25, 0.5, 1, 2.5, 5, 10, and 25 mm), and 17 different irradiation positions relative to the SCI site. The beam radius and position strongly affect the accumulated fluence within the injury site, whereas the NA appears to have a smaller effect on the accumulated fluence within the injury site. A large probe beam produces a uniform fluence distribution reaching the injury site, minimizing the effect of misplacing the probe at the center of the injury. Our findings will be beneficial to understanding the effects of irradiation parameters on tissues and organs, which will help reduce variability in the fluence applied to injury sites and will help optimize PBMT outcomes.

Download full-text PDF

Source
http://dx.doi.org/10.1089/photob.2020.4864DOI Listing

Publication Analysis

Top Keywords

irradiation parameters
20
injury site
16
effects irradiation
12
parameters position
12
photobiomodulation therapy
8
spinal cord
8
injury
8
cord injury
8
rat phantom
8
phantom model
8

Similar Publications

System identification and fault reconstruction in solar plants via extended Kalman filter-based training of recurrent neural networks.

ISA Trans

January 2025

Dept. de Ingeniería de Sistemas y Automática, University of Seville, Camino de los Descubrimientos, no number E-41092, Seville, Spain. Electronic address:

This article proposes using the extended Kalman filter (EKF) for recurrent neural network (RNN) training and fault estimation within a parabolic-trough solar plant. The initial step involves employing an RNN to model the system. Given the challenge of fault discernibility in the collectors, parallel EKFs are employed to reconstruct the parameters of the faults.

View Article and Find Full Text PDF

Innovative applications of cobalt tungstate nanoparticles (CoWO NPs) are directly linked to their increased production and consumption, which can consequently increase their release into aquatic ecosystems and the exposure of organisms. Microalgae are autotrophic organisms that contribute directly to global primary productivity and provide oxygen for maintaining many organisms on Earth. In this paper, we assessed the toxicity of CoWO NPs when in contact with the freshwater microalga Raphidocelis subcapitata (Chlorophyceae).

View Article and Find Full Text PDF

Automatic medical imaging segmentation via self-supervising large-scale convolutional neural networks.

Radiother Oncol

January 2025

Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA; Department of Biomedical Engineering, Emory University and Georgia Institute of Technology Atlanta, GA 30308, USA. Electronic address:

Purpose: This study aims to develop a robust, large-scale deep learning model for medical image segmentation, leveraging self-supervised learning to overcome the limitations of supervised learning and data variability in clinical settings.

Methods And Materials: We curated a substantial multi-center CT dataset for self-supervised pre-training using masked image modeling with sparse submanifold convolution. We designed a series of Sparse Submanifold U-Nets (SS-UNets) of varying sizes and performed self-supervised pre-training.

View Article and Find Full Text PDF

Proton dose deposition in heterogeneous media: A TOPAS Monte Carlo simulation study.

Appl Radiat Isot

January 2025

Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China. Electronic address:

This study investigated the influence of tissue electron density on proton beam dose distribution using TOPAS Monte Carlo simulation. Heterogeneous tissue models composed of 14 materials were constructed to simulate the dose deposition process of a 169.23 MeV proton beam.

View Article and Find Full Text PDF

Size Matters: Predicting Surgical Site Infection After Whole Breast Radiotherapy in the Era of Hypofractionation.

J Clin Med

December 2024

Department of Radiation Oncology, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 14647, Republic of Korea.

: Few studies have analyzed surgical site infections associated with hypofractionated RT. The purpose of this study was to identify risk factors for surgical site infections with a particular focus on volumetric parameters that reflect the size of the volumes treated, including tumors, surgical cavities, and breasts. : A total of 145 early breast cancer patients who were surgically staged 0-II undergoing hypofractionated RT on the whole breast were retrospectively reviewed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!