Loss of the cilium is important for cell cycle progression and certain developmental transitions. Chytrid fungi are a group of basal fungi that have retained centrioles and cilia, and they can disassemble their cilia via axoneme internalization as part of the transition from free-swimming spores to sessile sporangia. While this type of cilium disassembly has been observed in many single-celled eukaryotes, it has not been well characterized because it is not observed in common model organisms. To better characterize cilium disassembly via axoneme internalization, we focused on chytrids Rhizoclosmatium globosum and Spizellomyces punctatus to represent two lineages of chytrids with different motility characteristics. Our results show that each chytrid species can reel in its axoneme into the cell body along its cortex on the order of minutes, while S. punctatus has additional faster ciliary compartment loss and lash-around mechanisms. S. punctatus retraction can also occur away from the cell cortex and is partially actin dependent. Post-internalization, the tubulin of the axoneme is degraded in both chytrids over the course of about 2 hr. Axoneme disassembly and axonemal tubulin degradation are both partially proteasome dependent. Overall, chytrid cilium disassembly is a fast process that separates axoneme internalization and degradation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7944584 | PMC |
http://dx.doi.org/10.1002/cm.21637 | DOI Listing |
EMBO Rep
December 2024
Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
The early branching eukaryote Naegleria gruberi can transform transiently from an amoeboid life form lacking centrioles and flagella to a flagellate life form where these elements are present, followed by reversion to the amoeboid state. The mechanisms imparting elimination of axonemes and centrioles during this reversion process are not known. Here, we uncover that flagella primarily fold onto the cell surface and fuse within milliseconds with the plasma membrane.
View Article and Find Full Text PDFCytoskeleton (Hoboken)
October 2020
Department of Biology, Stanford University, Stanford, California, USA.
Loss of the cilium is important for cell cycle progression and certain developmental transitions. Chytrid fungi are a group of basal fungi that have retained centrioles and cilia, and they can disassemble their cilia via axoneme internalization as part of the transition from free-swimming spores to sessile sporangia. While this type of cilium disassembly has been observed in many single-celled eukaryotes, it has not been well characterized because it is not observed in common model organisms.
View Article and Find Full Text PDFJ Cell Sci
December 2013
Department of Life Sciences, University of Siena, Via A. Moro 4, 53100 Siena, Italy.
Primary cilia and flagella are distinct structures with different functions in eukaryotic cells. Despite the fact that they share similar basic organization and architecture, a direct developmental continuity among them has not been reported until now. The primary cilium is a dynamic structure that typically assembles and disassembles during mitotic cell cycles, whereas the sperm axoneme is nucleated by the centriole inherited by the differentiating spermatid at the end of meiosis.
View Article and Find Full Text PDFParasitol Res
February 2006
Laboratório de Ultraestrutura Celular, Universidade Santa Ursula, Rio de Janeiro, Brazil.
Giardia lamblia, a flagellated protist, is the parasite most commonly found in the intestinal tract of humans and other mammals causing a disease known as giardiasis. This parasite presents several cytoskeletal structures whose major components are microtubules, namely: the ventral adhesive disk, eight flagella axonemes, the median body, and funis. However, the cytoskeletal filamentous structures are poorly understood, and therefore, less studied.
View Article and Find Full Text PDFParasitol Res
January 2004
Programa de Pós Graduação em Ciências Morfológicas, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.
The effects of the microtubule affecting drugs taxol, nocodazole and colchicine on the cell cycle and ultrastructure of Tritrichomonas foetus, a protist parasite of cattle, were studied. Alterations in the cytoskeleton, motility and organellar ultrastructure were followed using anti-tubulin antibodies and fluorescence microscopy, scanning- and transmission-electron microscopy. Flow cytometry was also used to analyze the effect of the drugs on the cell cycle.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!