It was previously reported that Laplace transformed local CC2 (LCC2*) provided the best agreement (MAE = 0.145 eV) when comparing vertical excitation energies to experimental λ for a benchmark set of 17 BODIPY/Aza-BODIPY molecules. However, these energies did not agree with values obtained from canonical CC2. Here we report LCC2* computations of vertical excitation energies on the same benchmark set of molecules using a newly implemented treatment of the ground state. Comparison with resolution-of-identity approximate coupled cluster to second-order (RI-CC2) results demonstrate that the new LCC2* results agree quantitatively. Furthermore, these values can easily be corrected empirically to also provide excellent agreement with the experiment. We show that the local algebraic diagrammatic construction to second-order (LADC(2)) method exhibits the same differences between implementations as seen for LCC2. The source of the difference is traced to an improved treatment of the ground state in the local methods, which decreases agreement with the experiment (as attributed to a fortuitous cancellation of errors) but significantly improves agreement with RI-CC2. While the absolute vertical excitation energies now show larger deviations, there remains a strong linear correlation between the LCC2* results and the experiment. For the 17 BODIPY/Aza-BODIPY molecules vertical excitation energies are determined using DLPNO-STEOM-CCSD and shown to have excellent agreement with experimental λ (MAE = 0.145 eV), which is the best of all the single-reference methods. The vertical excitation energies are determined using LCC2*, empirically corrected LCC2*, and RI-CC2 for a series of eight large BODIPYs and Aza-BODIPYs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcc.26442 | DOI Listing |
J Phys Chem A
January 2025
Department of Physics, Yantai University, Yantai 264005, China.
Vibronic coupling and multiple electronic states effect play a pivotal role in the molecular spectroscopy of large systems. Herein, we present a detailed theoretical study on the absorption (ABS) and electronic circular dichroism (ECD) spectra of three [7]helicene derivatives in chloroform, with a particular emphasis on the significance of vibronic coupling and the multiple electronic states effect in spectral simulations. The vertical gradient (VG) and vertical Hessian (VH) models, incorporating the Franck-Condon (FC) effect and Herzberg-Teller (HT) contribution, are considered in the vibronic calculations.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, USA.
This study investigates the impact of structural isomerism on the excited state lifetime and redox energetics of heteroleptic [Ir(ppy)2(bpy)]+ and homoleptic Ir(ppy)3 photoredox catalysts using ground-state and time-dependent density functional theory methods. While the ground- and excited-state reduction potentials differ only slightly among the isomers of these complexes, our findings reveal significant variations in the radiative and non-radiative decay rates of the reactivity-controlling triplet 3MLCT states of these closely related species. The observed differences in radiative decay rates could be traced back to variations in the transition dipole moment, vertical energy gaps, and spin-orbit coupling of the isomers.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Applied Mathematics Laboratory, Courant Institute of Mathematical Sciences, Department of Mathematics, New York University, New York, NY 10012.
Mechanical systems with moving points of contact-including rolling, sliding, and impacts-are common in engineering applications and everyday experiences. The challenges in analyzing such systems are compounded when an object dynamically explores the complex surface shape of a moving structure, as arises in familiar but poorly understood contexts such as hula hooping. We study this activity as a unique form of mechanical levitation against gravity and identify the conditions required for the stable suspension of an object rolling around a gyrating body.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom.
ConspectusPhotochemical reactions have always been the source of a great deal of mystery. While classified as a type of chemical reaction, no doubts are allowed that the general tenets of ground-state chemistry do not directly apply to photochemical reactions. For a typical chemical reaction, understanding the critical points of the ground-state potential (free) energy surface and embedding them in a thermodynamics framework is often enough to infer reaction yields or characteristic time scales.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.
This study investigates the equilibrium geometries of four different Se isomers using the coupled cluster single and double perturbative (CCSD(T)) method, extrapolating to the complete basis sets. The ground-state geometry of the Se isomer with the C structure (2.8715 Å, 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!