The Relationship between PTPN22 R620W Polymorphisms and the Susceptibility to Autoimmune Thyroid Diseases: An Updated Meta-analysis.

Immunol Invest

Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China.

Published: February 2022

The protein tyrosine phosphatase non-receptor 22 (PTPN22) R620W polymorphism has been related to susceptibility to autoimmune thyroid disease (AITD) with inconsistent results. Therefore, this meta-analysis was designed to assess a more accurate association between the PTPN22 R620W polymorphism and AITD susceptibility. A systematic search of the EMBASE, PubMed, Web of Science, CBM, CNKI, and WanFang databases was performed to determine relevant publications. Statistical analyses of the odds ratios (ORs), 95% confidence intervals (CIs), and values were performed using STATA software. Our meta-analysis included 18 separate studies comprised of 4,726 cases and 4,220 controls. In the allele and all genetic models, PTPN22 R620W polymorphism and Graves' disease (GD) (allele model TvsC: OR = 1.573; 95% CI = 1.378-1.795; < .001) and Hashimoto's thyroiditis (HT) (allele model TvsC: OR = 1.737; 95% CI = 1.230-2.454; = .002) susceptibility was positively associated. A racial subgroup analysis showed that the T allele significantly increased AITD susceptibility in all genetic models involving Caucasians, but not in Asians. This meta-analysis showed that the PTPN22 R620W polymorphism is associated with the risk of GD and HT in the overall study population. In addition, the PTPN22 R620W polymorphism is associated with elevated AITD risk in Caucasians, but not in Asians.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08820139.2020.1837154DOI Listing

Publication Analysis

Top Keywords

ptpn22 r620w
16
r620w polymorphism
12
susceptibility autoimmune
8
autoimmune thyroid
8
relationship ptpn22
4
r620w
4
r620w polymorphisms
4
polymorphisms susceptibility
4
thyroid diseases
4
diseases updated
4

Similar Publications

The protein tyrosine phosphatase Lyp/PTPN22 drives TNFα-induced priming of superoxide anions production by neutrophils and arthritis.

Free Radic Biol Med

December 2024

INSERM-U1149, CNRS-ERL8252, Université de Paris-Cité, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, DHU FIRE, Faculté de Médecine, Site Xavier Bichat, Paris, France. Electronic address:

Neutrophils are essential for host defense against infections, but they also play a key role in acute and chronic inflammation. The protein tyrosine phosphatase non-receptor type 22 (PTPN22) gene encodes the lymphoid-specific tyrosine phosphatase (Lyp) and a genetic single-nucleotide polymorphism of PTPN22 rs2476601 (R620W) has been associated with several human autoimmune diseases, including rheumatoid arthritis (RA). Here, we investigated the role of Lyp in TNFα-induced priming of neutrophil ROS production and in the development of arthritis using new selective Lyp inhibitors.

View Article and Find Full Text PDF

A genetic variant in the gene (R620W, rs2476601) is strongly associated with increased risk for multiple autoimmune diseases and linked to altered TCR regulation and T cell activation. Here, we utilize Crispr/Cas9 gene editing with donor DNA repair templates in human cord blood-derived, naive T cells to generate risk edited (620W), non-risk edited (620R), or knockout T cells from the same donor. risk edited cells exhibited increased activation marker expression following non-specific TCR engagement, findings that mimicked KO cells.

View Article and Find Full Text PDF

The kinase Csk is the primary negative regulator of the Src-family kinases (SFKs, e.g., Lck, Fyn, Lyn, Hck, Fgr, Blk, Yes), phosphorylating a tyrosine on the SFK C-terminal tail that mediates autoinhibition.

View Article and Find Full Text PDF
Article Synopsis
  • The C1858T variant of the protein tyrosine phosphatase N22 gene is linked to autoimmune diseases like Type 1 diabetes and autoimmune thyroiditis, causing a mutation that reduces T cell activation.
  • Researchers developed a personalized treatment using liposomes to deliver siRNA that targets this variant allele more effectively when enhanced with a Siglec-10 ligand.
  • The modified lipoplexes (LiposiRNA-Sig10L) showed improved inhibition of the variant mRNA and better restored IL-2 secretion in peripheral blood mononuclear cells (PBMC) from patients with heterozygous Type 1 diabetes compared to standard treatments.
View Article and Find Full Text PDF

Autoimmune endocrine disorders, such as type 1 diabetes (T1D) and thyroiditis, at present are treated with only hormone replacement therapy. This emphasizes the need to identify personalized effective immunotherapeutic strategies targeting T and B lymphocytes. Among the genetic variants associated with several autoimmune disorders, the C1858T polymorphism of the protein tyrosine phosphatase non-receptor type 22 () gene, encoding for Lyp variant R620W, affects the innate and adaptive immunity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!